Skip to main content
Log in

Fiber-Shaped Soft Actuators: Fabrication, Actuation Mechanism and Application

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

As mechanical devices for moving or controlling mechanisms or systems, actuators have attracted increasing attention in various fields. Compared to traditional actuators with rigid structures, soft actuators made up of stimulus-responsive soft materials are more adaptable to complex working conditions due to soft bodies and diverse control styles. Different from plate-shaped soft actuators, which have the limited deformations between two dimensional (2D) and 3D-configurations such as bending and twisting, fiber-shaped soft actuators (FSAs) own intriguing deformation modes to satisfy diverse practical applications. In this mini review, the recent progress on the controlled fabrication of the FSAs is presented. The advantages and disadvantages of each fabrication method are also demonstrated. Subsequently, the as-developed actuation mechanisms of the FSAs are displayed. Additionally, typical examples of the related applications of the FSAs in different fields have been discussed. Finally, an outlook on the development tendency of the FSAs is put forward as well.

Graphical Abstract

A mini review concerns the recent progress of fiber-shaped soft actuators (FSAs) on the fabrication technology, actuation principle and application. In addition, an outlook on the development tendency of the FSAs is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature. 2015;521:7553.

    Article  Google Scholar 

  2. Chen SE, Pang YK, Yuan HY, Tan XB, Cao CY. Smart soft actuators and grippers enabled by self-powered tribo-skins. Adv Mater Tech. 2020;5:1901075.

    Article  Google Scholar 

  3. Paek J, Cho I, Kim J. Microrobotic tentacles with spiral bending capacity based on shape-engineered elastomeric microtubes. Sci Rep. 2015;5:14151.

    Article  CAS  Google Scholar 

  4. Abe T, Koizumi S, Nabae H, Endo G, Suzumori K. Muscle textile to implement soft suit to shift balancing posture of the body. IEEE RoboSoft. 2018;572–8. https://doi.org/10.1109/ROBOSOFT.2018.8405387.

  5. Khodambashi R, Alsaid Y, Rico R, Marvi H, Peet MM, Fisher RE, Berman S, He XM, Aukes DM. Heterogeneous hydrogel structures with spatiotemporal reconfigurability using addressable and tunable voxels. Adv Mater. 2021;33:2005906.

    Article  CAS  Google Scholar 

  6. Le XX, Lu W, Zhang JW, Chen T. Recent progress in biomimetic anisotropic hydrogel actuators. Adv Sci. 2019;6:1801584.

    Article  Google Scholar 

  7. Hoekstra DC, Debije MG, Schenning APHJ. Triple-shape-memory soft actuators from an interpenetrating network of hybrid liquid crystals. Macromolecules. 2021;54:5410–6.

    Article  CAS  Google Scholar 

  8. Linghu C, Zhang S, Wang CJ, Yu KX, Li CL, Zeng YJ, Zhou HD, Jin XH, You ZY, Song JZ. Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects. Sci Adv. 2020. https://doi.org/10.1126/sciadv.aay5120.

    Article  Google Scholar 

  9. Zhu MM, Wang WJ, Zhang CH, Zhu LP, Yang SG. Photo-responsive behaviors of hydrogen-bonded polymer complex fibers containing azobenzene functional groups. Adv Fiber Mat. 2021;3:172–9.

    Article  CAS  Google Scholar 

  10. Li TF, Li GR, Liang YM, Chen TY, Dai J, Yang XX, Liu BY, Zeng ZD, Huang ZL, Luo YW, Xie T, Yang W. Fast-moving soft electronic fish. Sci Adv. 2017;3: e1602045.

    Article  Google Scholar 

  11. Ge YH, Cao R, Ye SJ, Chen Z, Zhu ZF, Tu YF, Ge DT, Yang XM. A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients. Chem Commun. 2018;54:3126–9.

    Article  CAS  Google Scholar 

  12. Umrao S, Tabassian R, Kim J, Nguyen VH, Zhou QT, Nam S, II-Kwon O. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci Robot. 2019. https://doi.org/10.1126/scirobotics.aaw7797.

    Article  Google Scholar 

  13. Wang XQ, Chan KH, Cheng Y, Ding TP, Li TT, Achavananthadith S, Ahmet S, Ho JS, Ghim W. Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv Mater. 2020;32:2000351.

    Article  CAS  Google Scholar 

  14. Zeng H, Wasylczyk P, Wiersma DS, Priimagi A. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Adv Mater. 2018;30:1703554.

    Article  Google Scholar 

  15. Hines L, Petersen K, Sitti M. Inflated soft actuators with reversible stable deformations. Adv Mater. 2016;28:3690–6.

    Article  CAS  Google Scholar 

  16. Lu HF, Wang M, Chen XM, Lin BP, Yang H. Interpenetrating liquid crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property. J Am Chem Soc. 2019;36:14364–9.

    Article  Google Scholar 

  17. Yang Y, Pei Z, Li Z, Wei Y, Ji Y. Making and remaking dynamic 3d structures by shining light on flat liquid crystalline vitrimer films without a mold. J Am Chem Soc. 2016;138:2118–21.

    Article  CAS  Google Scholar 

  18. Verpaalen RCP, Da CMP, Engels TAP, Debije MG, Schenning APHJ. Liquid crystal networks on thermoplastics: reprogrammable photo-responsive actuators. Angew Chem Int Ed. 2020;59:4532–6.

    Article  CAS  Google Scholar 

  19. Bombara D, Fowzer S, Zhang J. Compliant, large-strain, and self-sensing twisted string actuators. Soft Robot. 2022;9:1.

    Google Scholar 

  20. Kim SH, Kwon CH, Park K, Mun TJ, Lepro X, Baughman RH, Spinks GM, Kim SJ. Bio-inspired, moisture-powered hybrid carbon nanotube yarn muscles. Sci Rep. 2016;6:23016.

    Article  CAS  Google Scholar 

  21. Wang Y, Wang Z, Lu ZY, Jung DAM, Fang SL, Zhang ZQ, Wu JP. Baughman RH Humidity- and water-responsive torsional and contractile lotus fiber yarn artificial muscles. ACS Appl Mater. 2021;13:6642.

    Article  CAS  Google Scholar 

  22. Yang XH, Wang WH, Miao MH. Moisture-responsive natural fiber coil-structured artificial muscles. ACS Appl Mater. 2018;10:32256.

    Article  CAS  Google Scholar 

  23. Nocentini S, Martella D, Wiersma DS, Parmeggiani C. Beam steering by liquid crystal elastomer fibres. Soft Matter. 2017;13:8590.

    Article  CAS  Google Scholar 

  24. Wang Y, Sun J, Liao W, Yang ZQ. Liquid crystal elastomer twist fibers towards rotating microengines. Adv Mater. 2021;34:2107840.

    Article  Google Scholar 

  25. Lv JA, Liu Y, Wei J, Chen EQ, Qin L, Yu YL. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature. 2016;537:179.

    Article  CAS  Google Scholar 

  26. Pang X, Qin L, Xu B, Liu Q, Yu YL. Ultralarge contraction directed by light-driven unlocking of prestored strain energy in linear liquid crystal polymer fibers. Adv Funct Mater. 2020;30:2002451.

    Article  CAS  Google Scholar 

  27. An YM, Gao LM, Wang TY. Graphene oxide/alginate hydrogel fibers with hierarchically arranged helical structures for soft actuator application. ACS Appl Nano Mater. 2020;3:5079.

    Article  CAS  Google Scholar 

  28. Omura T, Komiyama K, Maehara A, Kabe T, Iwata T. Elastic marine biodegradable fibers produced from poly (r)-3-hydroxybutylate-co-4-hydroxybutylate and evaluation of their biodegradability. ACS Appl Polym Mater. 2021;3:6479.

    Article  CAS  Google Scholar 

  29. Sharma K, Braun O, Tritsch S, et al. 2D Raman, ATR-FTIR, WAXD, SAXS and DSC data of PET mono-and PET/PA6 bicomponent filaments. Data Brief. 2021;38: 107416.

    Article  CAS  Google Scholar 

  30. Wang L, Zhang MY, Yang B, Tan JJ. Lightweight, robust, conductive composite fibers based on mxene@aramid nanofibers as sensors for smart fabrics. ACS Appl Mater. 2021;13:41933.

    Article  CAS  Google Scholar 

  31. Qi X, Yang W, Yu L, Wang WJ, Wu YL, Zhu SW, Zhu YF, Liu XD, Dong YB, Fu YQ. Design of ethylene-vinyl acetate copolymer fiber with two-way shape memory effect. Polyms Basel. 2019;11:1599.

    CAS  Google Scholar 

  32. Roach DJ, Yuan C, Kuang X, Li VCF, Blake P, Romero ML, Hammel I, Yu K, Qi HJ. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl Mater Interfaces. 2019;11:19514.

    Article  CAS  Google Scholar 

  33. Uh K, Yoon B, Lee CW, Kim JM. An electrolyte-free conducting polymer actuator that displays electrothermal bending and flapping wing motions under a magnetic field. ACS Appl Mater Interfaces. 2016;8:1289–96.

    Article  CAS  Google Scholar 

  34. Lin XY, Saed MO, Terentjev EM. Continuous spinning aligned liquid crystal elastomer fibers with a 3D printer setup. Soft Matter. 2021;17:5436.

    Article  CAS  Google Scholar 

  35. Lin S, Wang Z, Chen XY, Ren J, Ling SJ. Ultrastrong and highly sensitive fiber microactuators constructed by force-reeled silks. Adv Sci. 2020;7:1902743.

    Article  CAS  Google Scholar 

  36. Lima MD, Hussain MW, Spinks GM, Naficy S, Hagenasr D, Bykova JS, Tolly D, Baughman RH. Efficient, absorption-powered artificial muscles based on carbon nanotube hybrid yarns. Small. 2015;11:3113.

    Article  CAS  Google Scholar 

  37. Yuan JK, Neri W, Zakri C, Merzeau P, Kratz K, Lendlein A, Poulin P. Shape memory nanocomposite fibers for untethered high-energy microengines. Science. 2019;365:155.

    Article  CAS  Google Scholar 

  38. Koziol K, Vilatela J, Moisala A, Moisala A, Motta M, Cunniff P, Snnett M, Windle A. High-performance carbon nanotube fiber. Science. 2007;318:1892.

    Article  CAS  Google Scholar 

  39. Lee DM, Park J, Lee J, Lee SH, Kim SH, Kim SM, Jeong SH. Improving mechanical and physical properties of ultra-thick carbon nanotube fiber by fast swelling and stretching process. Carbon. 2021;172:733.

    Article  CAS  Google Scholar 

  40. Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JDW, Kim SH, Fang SL, Jung DAM, Goktepe F, Goktepe O, Mirvakili SM, Naficy S, Lepro XJ, Koziov ME, Kim SJ, Xu XR, Swedlove BJ, Wallace GG, Baughman RH. Artificial muscles from fishing line and sewing thread. Science. 2014;343:868.

    Article  CAS  Google Scholar 

  41. Liu ZS, Zhang R, Xiao YC, Li JT, Chang W, Qian D, Liu ZF. Somatosensitive film soft crawling robots driven by artificial muscle for load carrying and multi-terrain locomotion. Mater Horizons. 2021;8:1783.

    Article  CAS  Google Scholar 

  42. Jia TJ, Wang Y, Dou YY, Li YW, Andrade MJD, Wang R, Fang SL, Li JJ, Yu Z, Qiao R, Liu ZJ, Cheng Y, Su YW, Minary-Jolandan M, Baughman RH, Qian D, Liu ZF. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv Funct Mater. 2019;29:1808241.

    Article  Google Scholar 

  43. Xue J, Wu T, Dai Y, Xia YN. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119:5298.

    Article  CAS  Google Scholar 

  44. Wu JL, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioactive Mater. 2016;1:56.

    Article  Google Scholar 

  45. Han ZP, Wang JQ, Liu SP, Liu YJ, Luo SY, Guo F, Ma JY, Li P, Ming X, Chao G, Zhen X, Zhang QH, Tan YQ. Electrospinning of neat graphene nanofibers. Adv Fiber Mater. 2022;4:268.

    Article  CAS  Google Scholar 

  46. Li CP, Qiu M, Li RL, Li X, Wang MX, He JB, Qiang QR, Chen QH, Li XY, Chen YM, Qiu M, Xiao LR, Lin GG, Wu JX, Mai YW. Electrospinning engineering enables high-performance sodium-ion batteries. Adv Fiber Mater. 2022;4:43.

    Article  CAS  Google Scholar 

  47. Yin J, Ahmed A, Xu L. High-Throughput free surface electrospinning using solution reservoirs with different depths and its preparation mechanism study. Adv Fiber Mater. 2021;3:251.

    Article  CAS  Google Scholar 

  48. Xue JJ, Xie JW, Liu WY, Xia YN. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res. 2017;50:1976.

    Article  CAS  Google Scholar 

  49. Cha DI, Kim YH, Lee KH, Jung YC, Cho JW, Chun BC. Electrospun nonwovens of shape-memory polyurethane block copolymers. J Appl Polym Sci. 2005;96:460.

    Article  CAS  Google Scholar 

  50. Wang L, Zhang F, Liu Y, Leng JS. Shape memory polymer fibers: materials, structures, and applications. Adv Fiber Mater. 2022;4:5.

    Article  CAS  Google Scholar 

  51. Zhuo HT, Hu JL, Chen SJ. Study of the thermal properties of shape memory polyurethane nanofibrous nonwoven. J Mater Sci. 2011;46:3464.

    Article  CAS  Google Scholar 

  52. He Q, Wang Z, Wang Y, Wang ZJ, Li CH, Annapooranan R, Zeng J, Chen RK, Cai SQ. Electrospun liquid crystal elastomer microfiber actuator. Sci Robot. 2021. https://doi.org/10.1126/scirobotics.abi9704.

    Article  Google Scholar 

  53. Jeong W, Kim J, Kim S, Lee S, Mensing G, Beebe DJ. Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes. Lab Chip. 2004;4:576.

    Article  CAS  Google Scholar 

  54. Du XY, Li Q, Wu G, Chen S. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater. 2019;31:1903733.

    Article  CAS  Google Scholar 

  55. Li Q, Xu Z, Du XY, Cheng HY, Wu G, Wang CF, Cui ZF, Chen S. Microfluidic-directed hydrogel fabrics based on interfibrillar self-healing effects. Chem Mater. 2018;30:8822.

    Article  CAS  Google Scholar 

  56. Lim D, Lee E, Kim H, Park S, Beak S, Yoon J. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices. Soft Matter. 2015;11:1606.

    Article  CAS  Google Scholar 

  57. Stannarius R, Eremin A, Harth K, Morys M, DeMiglio A, Ohm C, Zentel R. Mechanical and optical properties of continuously spun fibres of a main-chain smectic A elastomer. Soft Matter. 1858;2012:8.

    Google Scholar 

  58. Tang MJ, Wang W, Li ZL, Guo ZY, Tian HY, Liu Z, Ju XJ, Xie R, Chu LY. Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures. Ind Eng Chem Res. 2018;57:9430.

    Article  CAS  Google Scholar 

  59. Kotikian A, Morales JM, Lu A, Mueller J, Davidson Z, Boley JW, Lewis JA. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv Mater. 2021;33:2101814.

    Article  CAS  Google Scholar 

  60. Duan XY, Yu JY, Zhu YX, Zheng ZQ, Liao QH, Xiao YK, Li YY, He ZP, Zhao Y, Wang HP, Qiu LT. Large-scale spinning approach to engineering knittable hydrogel fiber for soft robots. ACS Nano. 2020;14:14929.

    Article  CAS  Google Scholar 

  61. Naciri J, Srinivasan A, Jeon H, Nikolov N, Keller P, Ratna BR. Nematic elastomer fiber actuator. Macromolecules. 2003;36:8499.

    Article  CAS  Google Scholar 

  62. Yuk H, Lin ST, Ma C, Takaffoli M, Fang NX, Zhao XH. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat Commun. 2017;8:14230.

    Article  CAS  Google Scholar 

  63. Grellmann H, Lohse FM, Kamble VG, Winger H, Nocke A, Hickmann R, Wiessner S, Cherif C. Fundamentals and working mechanisms of artificial muscles with textile application in the loop. Smart Mater Struct. 2022;31: 023001.

    Article  CAS  Google Scholar 

  64. Giri N, Walker I. Continuum robots and underactuated grasping. Mech Sci. 2011;2:51.

    Article  Google Scholar 

  65. Kurumaya S, Nabae H, Endo G, Suzumori K. Active textile braided in three strands with thin McKibben muscle. Soft Robot. 2019;6:2.

    Google Scholar 

  66. Cacucciolo V, Nabae H, Suzumori K, Shea H. Electrically-driven soft fluidic actuators combining stretchable pumps with thin Mckibben muscles. Front Robot AI. 2020;6:146.

    Article  Google Scholar 

  67. Cacucciolo V, Shintake J, Kuwajima Y, Maeda S, Floreano D, Shea H. Stretchable pumps for soft machines. Nature. 2019;572:516.

    Article  CAS  Google Scholar 

  68. Daerden F, Lefeber D, Verrelst B, Han Van R. Pleated pneumatic artificial muscles: compliant robotic actuators. Proceedings 2001 IEEE/RSJ IROS. 2001, 4: 1958.

  69. Li ST, Zhang R, Zhang GH, Shuai LYZ, Chang W, Hu XY, Zou M, Zhou X, An BG, Qian D, Liu ZF. Microfluidic manipulation by spiral hollow-fibre actuators. Nat Commun. 2022;13:1331.

    Article  CAS  Google Scholar 

  70. Ilmain F, Tanaka T, Kokufuta E. Volume transition in a gel driven by hydrogen bonding. Nature. 1991;349:400.

    Article  CAS  Google Scholar 

  71. Suzuki A, Tanaka T. Phase-transition in polymer gels induced by visible-light. Nature. 1990;346:345.

    Article  CAS  Google Scholar 

  72. Tanaka T, Fillmore D, Sun ST, Nishio I, Swislow G, Shah A. Phase transitions in ionic gels. Phys Rev Lett. 1980;45:1636.

    Article  CAS  Google Scholar 

  73. Li X, Cai XB, Gao YF, Serpe MJ. Reversible bidirectional bending of hydrogel-based bilayer actuators. J Mater Chem B. 2017;5:2804.

    Article  CAS  Google Scholar 

  74. Liu XY, Xu H, Zhang LQ, Zhong M, Xie XM. Homogeneous and real super tough multi-bond network hydrogels created through a controllable metal ion permeation strategy. ACS Appl Mater. 2019;11:42856.

    Article  CAS  Google Scholar 

  75. Warren DS, Sutherland SPH, Kao JY, Weal GR, Mackay SM. The preparation and simple analysis of a clay nanoparticle composite hydrogel. J Chem Educ. 2017;94:1772.

    Article  CAS  Google Scholar 

  76. Li L, Shan H, Yue CY, Lam YC, Tam KC, Hu X. Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmur. 2002;20:7291.

    Article  Google Scholar 

  77. Southall NT, Dill KA, Haymet ADJ. A view of the hydrophobic effect. J Phys Chem B. 2002;10:2812.

    Article  Google Scholar 

  78. Jalani G, Jung CW, Lee JS, Lim DW. Fabrication and characterization of anisotropic nanofiber scaffolds for advanced drug delivery systems. Int J Nanomed. 2014;9:33.

    CAS  Google Scholar 

  79. You CW, Qin WJ, Yan Z, Ren ZX, Huang JY, Ii JT, Chang W, He WQ, Wen K, Yin SG, Zhou X, Liu ZF. Highly improved water tolerance of hydrogel fibers with a carbon nanotube sheath for rotational, contractile and elongational actuation. J Mater Chem A. 2021;9:10240.

    Article  CAS  Google Scholar 

  80. Terasawa N, Takeuchi I, Matsumoto H. Electrochemical properties and actuation mechanisms of actuators using carbon nanotube-ionic liquid gel. Sensor Actuat B: Chem. 2009;139:624.

    Article  CAS  Google Scholar 

  81. Terasawa N, Takeuchi I. Electrochemical property and actuation mechanism of an actuator using three different electrode and same electrolyte in air: Carbon nanotube/ionic liquid/polymer gel electrode, carbon nanotube/ionic liquid gel electrode and Au paste as an electrode. Sensor Actuat B Chem. 2010;145:775.

    Article  CAS  Google Scholar 

  82. Wang YH, Bian K, Hu CG, Zhang ZP, Chen N, Zhang HM, Qu LT. Flexible and wearable graphene/polypyrrole fibers towards multifunctional actuator applications. Electrochem Commun. 2013;35:49.

    Article  Google Scholar 

  83. Zheng J, Xiao P, Le XX, Lu W, Theao P, Ma CX, Du BY, Zhang JW, Huang YJ, Chen T. Mimosa inspired bilayer hydrogel actuator functioning in multi-environments. J Mater Chem C. 2018;6:1320.

    Article  CAS  Google Scholar 

  84. Vorlander D. Investigation of the molecular form by means of crystalline liquids. Z Phys Chem. 1923;105:211.

    CAS  Google Scholar 

  85. Jackson WJ, Kuhfuss HF. Liquid crystal polymers. I. Preparation and properties ofp-hydroxybenzoic acid copolyesters. J Polym Sci Part A Polym Chem. 1996;34:3031–55.

    Article  CAS  Google Scholar 

  86. Ube T, Ikeda T. Photomobile polymer materials with complex 3D deformation, continuous motions, self-regulation, and enhanced processability. Adv Opt Mater. 2019;7:1900380.

    Article  Google Scholar 

  87. Qing X, Lv JA, Yu YL. Photodeformable liquid crystal polymers. Acta Polym Sin. 2017;11:1679.

    Google Scholar 

  88. White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater. 2015;14:1087.

    Article  CAS  Google Scholar 

  89. Ge FJ, Zhao Y. Microstructured actuation of liquid crystal polymer networks. Adv Funct Mater. 2020;30:1901890.

    Article  CAS  Google Scholar 

  90. Cheng ZX, Ma SD, Zhang YH, Huang S, Chen YX, Yu HF. Photomechanical motion of liquid-crystalline fibers bending away from a light source. Macromolecules. 2017;50:8317.

    Article  CAS  Google Scholar 

  91. Lan R, Sun J, Shen C, Huang R, Zhang ZP, Zhang LY, Wang L, Yang H. Near-infrared photodriven self-sustained oscillation of liquid-crystalline network film with predesignated polydopamine coating. Adv Mater. 2020;32:1906319.

    Article  CAS  Google Scholar 

  92. Wang Y, Dang A, Zhang Z, Yin R, Gao YC, Feng L, Yang S. Repeatable and reprogrammable shape morphing from photoresponsive gold nanorod/liquid crystal elastomers. Adv Mater. 2020;32:2004270.

    Article  CAS  Google Scholar 

  93. Yu Y, Li LL, Liu EP, Han X, Wang JJ, Xie YX, Lu CH. Light-driven core-shell fiber actuator based on carbon nanotubes/ liquid crystal elastomer for artificial muscle and phototropic locomotion. Carbon. 2022;187:97.

    Article  CAS  Google Scholar 

  94. Dong L, Zhao Y. Photothermally driven liquid crystal polymer actuators. Mater Chem Front. 1932;2018:2.

    Google Scholar 

  95. Orozco F, Kaveh M, Santosa DS, Lima GMR, Gomes DR, Pei YT, Araya-Hermosilla R, Moreno-Villoslada I, Picchioni F, Bose RK. Electroactive self-healing shape memory polymer composites based on diels-alder chemistry. ACS Appl Polym Mater. 2021;3:6147.

    Article  CAS  Google Scholar 

  96. Sun WJ, Guan Y, Wang YY, Wang T, Xu YT, Kong WW, Jia LC, Yan DX, Li ZM. Low-voltage actuator with bilayer structure for various biomimetic locomotions. ACS Appl Mater Interfaces. 2021;13:43449.

    Article  CAS  Google Scholar 

  97. Zhang L, Lin ZH, Zhou Q, Ma SQ, Liang YH, Zhang ZH. PEEK modified PLA shape memory blends: towards enhanced mechanical and deformation properties. Front Mater Sci. 2020;2:177.

    Article  Google Scholar 

  98. Voit W, Ware T, Dasari RR, Smith P, Danz L, Simon D, Barlow S, Marder SR, Gall K. High-strain shape-memory polymers. Adv Funct Mater. 2010;20:162.

    Article  CAS  Google Scholar 

  99. Qi XM, Dong YB, Islam MZ, Zhu YF, Fu YQ, Fu SY. Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber. Compos Sci Technol. 2021;203: 108609.

    Article  CAS  Google Scholar 

  100. Lang C, Lloyd EC, Matuszewski KE, Xu YF, Ganesan V, Huang R, Kumar M, Hickey RJ. Nanostructured block copolymer muscles. Nat Nanotec. 2022;17:752.

    Article  CAS  Google Scholar 

  101. Khoury LR, Popa I. Chemical unfolding of protein domains induces shape change in programmed protein hydrogels. Nat Commun. 2019;10:5439.

    Article  Google Scholar 

  102. Cera L, Gonzalez GM, Liu QH, Choi S, Chantre CO, Lee J, Gabardi R, Choi MC, Shin K, Parker KK. A bioinspired and hierarchically structured shape-memory material. Nat Mater. 2021;20:242.

    Article  CAS  Google Scholar 

  103. Wang J, Zhao QL, Cui HQ, Wang YL, Chen HX, Du XM. Tunable shape memory polymer mold for multiple microarray replications. J Mater Chem A. 2018;6:24748.

    Article  CAS  Google Scholar 

  104. Cui CH, An L, Zhang ZL, Ji MK, Chen K, Yang YX, Su Q, Wang F, Cheng YL, Zhang YF. Reconfigurable 4D printing of reprocessable and mechanically strong polythiourethane covalent adaptable networks. Adv Funct Mater. 2022;32:2203720.

    Article  CAS  Google Scholar 

  105. Buckner TL, Bilodeau RA, Kim SY, Kramer-Bottiglio R. Roboticizing fabric by integrating functional fibers. PNAS. 2021;117:25360.

    Article  Google Scholar 

  106. Brochu P, Pei QB. Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun. 2010;31:10.

    Article  CAS  Google Scholar 

  107. Pelrine R, Kornbluh R, Pei QB, Joseph J. High-speed electrically actuated elastomers with strain greater than 100%. Science. 2000;287:836.

    Article  CAS  Google Scholar 

  108. Qiu Y, Zhang E, Plamthottam R, Pei QB. Dielectric elastomer artificial muscle: materials innovations and device explorations. Acc Chem Res. 2019;52:316.

    Article  CAS  Google Scholar 

  109. Mirvakili SM, Hunter IW. Artificial muscles: mechanisms, applications, and challenges. Adv Mater. 2018;30:1704407.

    Article  Google Scholar 

  110. Kofod G, Stoyanov H, Gerhard R. Multilayer coaxial fiber dielectric elastomers for actuation and sensing. Appl Phys A. 2011;102:577.

    Article  CAS  Google Scholar 

  111. Arora S, Ghosh T, Muth J. Dielectric elastomer based prototype fiber actuators. Sens Actuat-A Phys. 2007;1:321.

    Article  Google Scholar 

  112. Shimizu K, Nagai T, Shintake J. Dielectric elastomer fiber actuators with aqueous electrode. Polymers. 2021;13:4310.

    Article  Google Scholar 

  113. Chortos A, Mao J, Mueller J, Hajiesmaili E, Lewis JA, Clarke DR. Printing reconfigurable bundles of dielectric elastomer fibers. Adv Funct Mater. 2021;31:2010643.

    Article  CAS  Google Scholar 

  114. Wan GC, Jin CR, Trase I, Zhao S, Chen Z. Helical structures mimicking chiral seedpod opening and tendril coiling. Sensors. 2018;18:2973.

    Article  Google Scholar 

  115. Haines CS, Li N, Spinks GM, Aliev AE, Di JT, Baughman RH. New twist on artificial muscles. PNAS. 2016;113:11709.

    Article  CAS  Google Scholar 

  116. Sim HJ, Jang Y, Kim H, Choi JG, Park JW, Lee DY, Kim SJ. Self-helical fiber for glucose-responsive artificial muscle. ACS Appl Mater Inerfaces. 2020;12:20228.

    Article  CAS  Google Scholar 

  117. Xu LL, Peng QY, Zhu Y, Zhao X, Yang MD, Wang SS, Xue FH, Yuan Y, Lin ZS, Xu F, Sun XX, Li JJ, Yin WL, Li YB, He XD. Artificial muscle with reversible and controllable deformation based on stiffness-variable carbon nanotube spring-like nanocomposite yarn. Nanoscale. 2019;11:8124.

    Article  CAS  Google Scholar 

  118. Amjadi M, Sitti M. High-performance multiresponsive paper actuators. ACS Nano. 2016;10:10202.

    Article  CAS  Google Scholar 

  119. Lu C, Park S, Richner TJ, Derry A, Brown I, Hou C, Rao SY, Kang J, Moritz CT, Fink Y, Anikeeva P. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci Adv. 2017;3: e1600955.

    Article  Google Scholar 

  120. Kanik M, Orguc S, Varnavides G, Kim J, Benavides T, Gonzalez D, Akintilo T, Tasan CC, Chandrakasan AP, Fink Y, Anikeeva P. Strain-programmable fiber-based artificial muscle. Science. 2019;365:145.

    Article  CAS  Google Scholar 

  121. Kimura D, Irisawa T, Takagi K, Tahara K, Sakurai D, Watanabe H, Takarada W, Shioya M. Mechanism for anisotropic thermal expansion of polyamide fibers. Sensor Actuat B Chem. 2021;344: 130262.

    Article  CAS  Google Scholar 

  122. Ghatak A, Mahadevan L. Solenoids and plectonemes in stretched and twisted elastomeric filaments. Phys Rev Lett. 2005;95: 057801.

    Article  CAS  Google Scholar 

  123. Guo WH, Liu C, Zhao FY, Sun XM, Yang ZB, Chen T, Chen XL, Qiu LB, Hu XH, Peng HS. A Novel Electromechanical actuation mechanism of a carbon nanotube fiber. Adv Mater. 2012;24:5379.

    Article  CAS  Google Scholar 

  124. Lima MD, Li N, De Andrade MJ, Fang SL, Oh J, Spinks GM, Kozlov ME, Haines CS, Suh D, Foroughi J, Kim SJ, Chen YS, Ware T, Shin MK, Machado LD, Fonseca AF, Madden JD, Voit WE, Gavao DS, Baughman RH. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science. 2012;338:928.

    Article  CAS  Google Scholar 

  125. Shang YY, He XD, Wang CH, Zhu LY, Peng QY, Shi EZ, Wu ST, Yang YB, Xu WJ, Wang RG, Du SY, Cao AY, Li YB. Large-deformation, multifunctional artificial muscles based on single-walled carbon nanotube yarns. Adv Eng Mater. 2015;17:14.

    Article  CAS  Google Scholar 

  126. Chen PN, Xu YF, He SS, Sun XM, Pan SW, Deng J, Chen DY, Peng HS. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat Nanotech. 2015;10:1077.

    Article  CAS  Google Scholar 

  127. Choi K, Park SJ, Won M, Park CH. Soft fabric muscle based on thin diameter SMA springs. Smart Mater Struct. 2022;31: 055020.

    Article  Google Scholar 

  128. Nishimura Y, Spinks GM. Detailing the visco-elastic origin of thermo-mechanical training of twisted and coiled polymer fiber artificial muscles. J Polym Sci. 2022;60:1360.

    Article  CAS  Google Scholar 

  129. Hiramitsu T, Suzumori K, Nabae H, Endo G. Experimental evaluation of textile mechanisms made of artificial muscles. IEEE RoboSoft. 2019;1–6. https://doi.org/10.1109/ROBOSOFT.2019.8722802.

  130. Shahsavan H, Aghakhani A, Zeng H, Guo YB, Davidson ZS, Priimagi A, Sitti M. Bioinspired underwater locomotion of light-driven liquid crystal gels. PNAS. 2020;117:5125.

    Article  CAS  Google Scholar 

  131. Xiang SL, Su YX, Yin H, Li C, Zhu MQ. Visible-light-driven isotropic hydrogels as anisotropic underwater actuators. Nano Energy. 2021;85: 105965.

    Article  CAS  Google Scholar 

  132. Baumann A, Sánchez-Ferrer A, Jacomine L, Martinoty P, Houerou VL, Ziebert F, Kulic IM. Motorizing fibres with geometric zero-energy modes. Nat Mater. 2018;17:523.

    Article  CAS  Google Scholar 

  133. Bazir A, Baumann A, Ziebert F, Kulic IM. Dynamics of fiberboids. Soft Matter. 2020;16:5210.

    Article  CAS  Google Scholar 

  134. Ahn C, Li K, Cai SQ. Light or thermally-powered autonomous rolling of an elastomer rod. ACS Appl Mater Interfaces. 2018;10:25689.

    Article  CAS  Google Scholar 

  135. Hu ZM, Li YL, Zhao TH, Lv JA. Self-winding liquid crystal elastomer fiber actuators with high degree of freedom and tunable actuation. Appl Mater Today. 2022;27:101449.

    Article  Google Scholar 

  136. He SS, Chen PN, Qiu LB, Wang BJ, Sun XM, Xu YF, Peng HS. A mechanically actuating carbon-nanotube fiber in response to water and moisture. Angew Chem Int Ed. 2015;54:14880.

    Article  CAS  Google Scholar 

  137. Niiyama E, Tanabe K, Uto K, Kikuchi A, Ebara M. Shape-memory nanofiber meshes with programmable cell orientation. Fibers. 2019;7:20.

    Article  CAS  Google Scholar 

  138. Fischer C, Boehler Q, Nelson BJ. Using magnetic fields to navigate and simultaneously localize catheters in endoluminal environments. IEEE Robot Autom Lett. 2022;3:7217.

    Article  Google Scholar 

  139. Piskarev Y, Shintake J, Chautems C, Lussi J, Boehler Q, Nelson BJ, Floreano D. A variable stiffness magnetic catheter made of a conductive phase-change polymer for minimally invasive surgery. Adv Funct Mater. 2022;20:2107662.

    Article  Google Scholar 

  140. Lussi J, Mattmann M, Sevim S, Grigis F, De Marco C, Chautems C, Pane S, Puigmart-Luis J, Boehler Q, Nelson BJ. A submillimeter continuous variable stiffness catheter for compliance control. Adv Sci. 2021;18:2101290.

    Article  Google Scholar 

  141. Mattmann M, De Marco C, Briatico F, Tagliabue S, Colusso A, Chen XZ, Lussi J, Chautems C, Pane S, Nelson B. Thermoset shape memory polymer variable stiffness 4D robotic catheters. Adv Sci. 2021;1:2103277.

    Google Scholar 

  142. Wang WJ, Xu X, Zhang CH, Huang H, Zhu LP, Yue K, Zhu MF, Yang SG. Skeletal muscle fibers inspired polymeric actuator by assembly of triblock polymers. Adv Sci. 2022;9:2105764.

    Article  CAS  Google Scholar 

  143. Liu DZ, Zhu LP, Huang WT, Yue K, Yang SG. Polymer complex fiber for linear actuation with high working density and stable catch-state. ACS Macro Lett. 2020;9:1507–13.

    Article  CAS  Google Scholar 

  144. Zhu MM, Wang WJ, Zhang CH, Zhu LP, Yang SG. Photo-responsive behaviors of hydrogen-bonded polymer complex fibers containing azobenzene functional groups. Adv Fiber Mater. 2021;3:172–9.

    Article  CAS  Google Scholar 

  145. Zuo XW, Fan TT, Qu LJ, Zhang XJ, Miao JL. Smart multi-responsive aramid aerogel fiber enabled self-powered fabrics. J Mater Chem C. 2022;10:14027–52.

    Google Scholar 

  146. Li JF, Sun JX, Wu D, Huang WT, Zhu MF, Reichmanis E, Yang SG. Functionalization-directed stabilization of hydrogen-bonded polymer complex fibers: elasticity and conductivity. Adv Fiber Mater. 2019;1:71–81.

    Article  Google Scholar 

  147. Zhu LP, Yang SG, Zhu MF. Fibers make a better life. Chin J Polym Sci. 2022;40:331–2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 21875160), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (Grant No. KF2219), JK20202A030463, the Natural Science Foundation of Tianjin City (Grant No. 20JCQNJC00870), and the Scientific Research Project of Tianjin Municipal Education Commission (Grant No. 2020KJ054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuguang Yang, Gaihong An or Conghua Lu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, J., Han, X. et al. Fiber-Shaped Soft Actuators: Fabrication, Actuation Mechanism and Application. Adv. Fiber Mater. 5, 868–895 (2023). https://doi.org/10.1007/s42765-022-00254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00254-4

Keywords

Navigation