Skip to main content
Log in

Recent Advances in Ultrafine Fibrous Materials for Effective Warmth Retention

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Extremely cold environment has led to a variety of serious public health issues and posed huge burden on the social economy, which is an urgent challenge to the human worldwide. Featured with comfort, convenience, and cost-effectiveness, fibrous materials have been selected as heat insulation materials to protect the human body against the cold for centuries. The advanced ultrafine fibers, with remarkable softness, small average diameter and pore size, and high porosity, have found extensive attention, as promising candidate for application in reducing the heat loss. In this review, the heat transfer mechanisms for single fiber and fiber assembly are provided, and the typical categories of ultrafine fibrous materials for warmth retention, classified as fibrous membrane and fibrous sponge in terms of aggregate structures, are systematically summarized. In particular, this review comprehensively discusses the fabrication strategies, structure characteristics, and significant properties of various ultrafine fibrous materials. Finally, the current challenges and future development prospects of ultrafine fibrous materials for effective warmth retention are highlighted.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from ref [38]. Copyright 2020, the authors, Wiley–VCH GmbH. d Schematic illustration of the thermal transportation in a single porous fiber. Reproduced with permission from ref [46]. Copyright 2018, WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cai LL, Song AY, Wu PL, Hsu PC, Peng YC, Chen J, Liu C, Catrysse PB, Liu YY, Yang AK, Zhou CX, Zhou CY, Fan SH, Cui Y. Warming up human body by nanoporous metallized polyethylene textile. Nat Commun 2017;8:496.

    Article  Google Scholar 

  2. Capstick SB, Pidgeon NF. Public perception of cold weather events as evidence for and against climate change. Clim Change 2014;122:695.

    Article  Google Scholar 

  3. Gasparrini A, Guo YM, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong SL, Rocklöv J, Forsberg B, Leone M, De Sario M, Bell ML, Guo YLL, Wu CF, Kan HD, Yi SM, de Sousa Zanotti Stagliorio Coelho M, Saldiva PHN, Honda Y, Kim H, Armstrong B. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 2015;386:369.

  4. Hsu PC, Liu C, Song AY, Zhang Z, Peng YC, Xie J, Liu K, Wu CL, Catrysse PB, Cai LL, Zhai S, Majumdar A, Fan SH, Cui Y. A dual-mode textile for human body radiative heating and cooling. Sci Adv 2017;3:e1700895.

    Article  Google Scholar 

  5. Jessoe K, Moore FC. The energy costs of climate change. Nature 2021;598:262.

    Article  CAS  Google Scholar 

  6. Hsu PC, Song AY, Catrysse PB, Liu C, Peng Y, Xie J, Fan SH, Cui Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016;353:1019.

    Article  CAS  Google Scholar 

  7. Li MM, Gan F, Dong J, Fang YT, Zhao X, Zhang QH. Facile Preparation of continuous and porous polyimide aerogel fibers for multifunctional applications. ACS Appl Mater Interfaces 2021;13:10416.

    Article  CAS  Google Scholar 

  8. Fan JT, Cheng XY. Heat and moisture transfer with sorption and phase change through clothing assemblies part II: theoretical modeling, simulation, and comparison with experimental results. Text Res J 2005;75:187.

    Article  CAS  Google Scholar 

  9. Čubrić IS, Skenderi Z. Effect of finishing treatments on heat resistance of one- and two-layered fabrics. Fiber Polym 2014;15:1635.

    Article  Google Scholar 

  10. Kesimci MO, Demirel H, Özdemir Ö, Kanik M. Influence of flock coating on the thermophysiological comfort properties of woven cotton fabric. J Text Inst 2022. https://doi.org/10.1080/00405000.2022.2043574 .

    Article  Google Scholar 

  11. Wang K, Fu CY, Wang R, Tao GM, Xia ZG. High-resilience cotton base yarn for anti-wrinkle and durable heat-insulation fabric. Compos Part B Eng 2021;212:108663.

    Article  CAS  Google Scholar 

  12. Cui P, Wang FM, Wei AJ, Zhao KW. The performance of kapok/down blended wadding. Text Res J 2010;80:516.

    Article  CAS  Google Scholar 

  13. Jabbar A, Ali MA, Shahzad A, Naeem MS, Javed Z, Qadir MB, Rehman K, Irfan M, Ahmad Z. Development of kapok/recycled-PET blended needle-punched thermal waddings. J Nat Fibers 2022;19:1024.

    Article  CAS  Google Scholar 

  14. Gao J, Yu WD, Pan N. Structures and properties of the goose down as a material for thermal insulation. Text Res J 2007;77:617.

    Article  CAS  Google Scholar 

  15. Wang ZQ, Wan YP, Zheng XH, Yang HW, Wang P, Li CL. Enhancing the radiative heating performance of down fibers by layer-by-layer self-assembly. J Clean Prod 2021;298:126760.

    Article  CAS  Google Scholar 

  16. Yang S, Li MS, Shen XJ. Fractal approach to structure and thermal property of down fiber assembly. J Nat Fibers 2018;15:853.

    Article  Google Scholar 

  17. Cholewinska P, Michalak M, Łuczycka D, Czyż K. An effect of suint on sheep wool impedance and heat resistance values. J Nat Fibers 2020;17:382.

    Article  Google Scholar 

  18. Li WB, Zhao Y, Wang X. Effect of surface modification on the dynamic heat and mass transfer of wool fabrics. J Therm Biol 2019;85:102416.

    Article  Google Scholar 

  19. Cheng XW, Jin WJ, Zhang C, Wu YX, Guan JP. A facile and durable flame retardant approach for silk fabric through Kabachnik-Fields reaction. Thermochim Acta 2021;700:178929.

    Article  CAS  Google Scholar 

  20. Maleki H, Montes S, Hayati-Roodbari N, Putz F, Huesing N. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure-an approach towards 3D printing of aerogels. ACS Appl Mater Interfaces 2018;10:22718.

    Article  CAS  Google Scholar 

  21. Maleki H, Whitmore L, Hüsing N. Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications. J Mater Chem A 2018;6:12598.

    Article  CAS  Google Scholar 

  22. Chang HB, Luo J, Gulgunje PV, Kumar S. Structural and functional fibers. Annu Rev Mater Res 2017;47:331.

    Article  CAS  Google Scholar 

  23. Hu F, Wu SY, Sun YG. Hollow-structured materials for thermal insulation. Adv Mater 2019;31:1801001.

    Article  Google Scholar 

  24. Lin CM, Lou CW, Lin JH. Manufacturing and properties of fire-retardant and thermal insulation nonwoven fabrics with FR-polyester hollow fibers. Text Res J 2009;79:993.

    Article  CAS  Google Scholar 

  25. Zhao J, Li BA, Li X, Qin YC, Li C, Wang SC. Numerical simulation of novel polypropylene hollow fiber heat exchanger and analysis of its characteristics. Appl Therm Eng 2013;59:134.

    Article  CAS  Google Scholar 

  26. Celep G, Yüksekkaya ME. Comparison of thermal comfort properties of single jersey fabrics produced by hollow yarns with different hollowness ratio. J Text Inst 2017;108:165.

    Google Scholar 

  27. Liu R, Hou L, Yue G, Li H, Zhang J, Liu J, Miao B, Wang N, Bai J, Cui Z, Liu T, Zhao Y. Progress of fabrication and applications of electrospun hierarchically porous nanofibers. Adv Fiber Mater 2022;4:604.

    Article  CAS  Google Scholar 

  28. Ruckdeschel P, Philipp A, Retsch M. Understanding thermal insulation in porous, particulate Materials. Adv Funct Mater 2017;27:1702256.

    Article  Google Scholar 

  29. Li X, Dong GQ, Liu ZW, Zhang XT. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol–gel confined transition strategy. ACS Nano 2021;15:4759.

    Article  CAS  Google Scholar 

  30. Hu XL, Tian MW, Xu TL, Sun XT, Sun B, Sun CC, Liu XQ, Zhang XJ, Qu LJ. Multiscale disordered porous fibers for self-sensing and self-sooling integrated smart sportswear. ACS Nano 2020;14:559.

    Article  CAS  Google Scholar 

  31. Xin Y, Reneker DH. Hierarchical polystyrene patterns produced by electrospinning. Polymer 2012;53:4254.

    Article  CAS  Google Scholar 

  32. Shin MK, Kim SI, Kim SJ. Controlled assembly of polymer nanofibers: from helical springs to fully extended. Appl Phys Lett 2006;88:223109.

    Article  Google Scholar 

  33. Yu J, Qiu YJ, Zha XX, Yu M, Yu JL, Rafique J, Yin J. Production of aligned helical polymer nanofibers by electrospinning. Eur Polym J 2008;44:2838.

    Article  CAS  Google Scholar 

  34. Zhao L, Wu HY, Jiao WL, Yin X, Si Y, Yu JY, Ding B. Superelastic, lightweight, and flame-retardant 3D fibrous sponge fabricated by one-step electrospinning for heat retention. Compos Communs 2021;25:100681.

    Article  Google Scholar 

  35. Zhang JC, Song J, Liu LF, Zhang P, Si Y, Zhang SC, Yu JY, Ding B. Electroconductive nanofibrous membranes with nanosheet-based microsphere-threaded heterostructures enabling oily wastewater remediation. J Mater Chem A 2021;9:15310.

    Article  CAS  Google Scholar 

  36. Zheng ZB, Wu HY, Si Y, Jia YT, Ding B. Stretchable and resilient fibrous sponges tailored by interlocking double-network for warmth retention. Compos Commun 2021;27:100788.

    Article  Google Scholar 

  37. Xu HY, Wang S, Gong XB, Yang M, Liu XY, Zhang SC, Yu JY, Ding B. Superelastic, ultralight, and washable electrospun fibrous sponges for effective warmth retention. Compos Commun 2022;29:101024.

    Article  Google Scholar 

  38. Apostolopoulou Kalkavoura V, Munier P, Bergström L. Thermally insulating nanocellulose-based materials. Adv Mater 2021;33:2001839.

    Article  CAS  Google Scholar 

  39. Collishaw PG, Evans JRG. An assessment of expressions for the apparent thermal conductivity of cellular materials. J Mater Sci 1994;29:2261.

    Article  CAS  Google Scholar 

  40. Liang YY, Wang YJ, Wu HJ, Huang GS, Yang JM. Controllable nano-fibrous interlayers for improved thermal insulation performance. Appl Therm Eng 2020;179:115781.

    Article  CAS  Google Scholar 

  41. Lu X, Arduinischuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW. Thermal conductivity of monolithic organic aerogels. Science 1992;255:971.

    Article  CAS  Google Scholar 

  42. Lee SC, Cunnington GR. Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J Thermophys Heat Transf 2000;14:121.

    Article  Google Scholar 

  43. Bi C, Tang GH, Hu ZJ, Yang HL, Li JN. Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation. Int J Heat Mass Transf 2014;79:126.

    Article  Google Scholar 

  44. Swimm K, Vidi S, Reichenauer G, Ebert HP. Coupling of gaseous and solid thermal conduction in porous solids. J Non-Cryst Solids 2017;456:114.

    Article  CAS  Google Scholar 

  45. Dou LY, Cheng XT, Zhang XX, Si Y, Yu JY, Ding B. Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. J Mater Chem A 2020;8:7775.

    Article  CAS  Google Scholar 

  46. Cui Y, Gong HX, Wang YJ, Li DW, Bai H. A thermally insulating textile inspired by polar bear hair. Adv Mater 2018;30:1706807.

    Article  Google Scholar 

  47. Obori M, Suh D, Yamasaki S, Kodama T, Saito T, Isogai A, Shiomi J. Parametric model to analyze the components of the thermal conductivity of a cellulose-nanofibril aerogel. Phys Rev Appl 2019;11:024044.

    Article  CAS  Google Scholar 

  48. Zhang XA, Yu SJ, Xu BB, Li M, Peng ZW, Wang YX, Deng SL, Wu XJ, Wu ZP, Ouyang M, Wang YH. Dynamic gating of infrared radiation in a textile. Science 2019;363:619.

    Article  CAS  Google Scholar 

  49. Wang M, Pan N. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int J Heat Mass Transf 2008;51:1325.

    Article  CAS  Google Scholar 

  50. Li XS, Yang YC, Quan ZZ, Wang LM, Ji DX, Li FX, Qin XH, Yu JY, Ramakrishna S. Tailoring body surface infrared radiation behavior through colored nanofibers for efficient passive radiative heating textiles. Chem Eng J 2022;430:133093.

    Article  CAS  Google Scholar 

  51. Ni G, Li G, Boriskina SV, Li HX, Yang WL, Zhang TJ, Chen G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat Energy 2016;1:16126.

    Article  CAS  Google Scholar 

  52. Wicklein B, Kocjan A, Salazar Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 2015;10:277.

    Article  CAS  Google Scholar 

  53. Zhang SC, Chen K, Yu JY, Ding B. Model derivation and validation for 2D polymeric nanonets: origin, evolution, and regulation. Polymer 2015;74:182.

    Article  CAS  Google Scholar 

  54. Zhang ZF, Ji DX, He HJ, Ramakrishna S. Electrospun ultrafine fibers for advanced face masks. Mater Sci Eng R 2021;143:100594.

    Article  Google Scholar 

  55. Yu Y, Xiong SW, Huang H, Zhao L, Nie K, Chen SH, Xu J, Yin XZ, Wang H, Wang LX. Fabrication and application of poly (phenylene sulfide) ultrafine fiber. React Funct Polym 2020;150:104539.

    Article  CAS  Google Scholar 

  56. Lian YL, Yu H, Wang MY, Yang XN, Li Z, Yang F, Wang Y, Tai HL, Liao YL, Wu JY, Wang XR, Jiang YD, Tao GM. A multifunctional wearable E-textile via integrated nanowire-coated fabrics. J Mater Chem C 2020;8:8399.

    Article  CAS  Google Scholar 

  57. Qin HF, Zhang YF, Jiang JG, Wang LL, Song MY, Bi R, Zhu PH, Jiang F. Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating sssembly. Adv Funct Mater 2021;31:2106269.

    Article  CAS  Google Scholar 

  58. Zhang SC, Liu H, Tang N, Ali N, Yu JY, Ding B. Highly efficient, transparent, and multifunctional air filters using self-assembled 2D nanoarchitectured fibrous networks. ACS Nano 2019;13:13501.

    Article  CAS  Google Scholar 

  59. Zhang SC, Liu H, Tang N, Zhou S, Yu J, Li BY, Ding B. Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks. Adv Mater 2020;32:2002361.

  60. Zhang SC, Liu H, Tang N, Ge JL, Yu JY, Ding B. Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks. Nat Commun 2019;10:1458.

    Article  CAS  Google Scholar 

  61. Liu QX, Huang J, Zhang JM, Hong Y, Wan YB, Wang Q, Gong ML, Wu ZG, Guo CF. Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure. ACS Appl Mater Interfaces 2018;10:2026.

    Article  CAS  Google Scholar 

  62. Hsu PC, Liu XG, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y. Personal thermal management by metallic nanowire-coated textile. Nano Lett 2014;15:365.

    Article  Google Scholar 

  63. Yu ZY, Gao YF, Di X, Luo HJ. Cotton modified with silver-nanowires/polydopamine for a wearable thermal management device. RSC Adv 2016;6:67771.

    Article  CAS  Google Scholar 

  64. Peng YC, Chen J, Song AY, Catrysse PB, Hsu PC, Cai LL, Liu BF, Zhu YY, Zhou GM, Wu DS, Lee HR, Fan SH, Cui Y. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain 2018;1:105.

    Article  Google Scholar 

  65. Cai LL, Song AY, Li W, Hsu PC, Lin DC, Catrysse PB, Liu YY, Peng YC, Chen J, Wang HX, Xu JW, Yang AK, Fan SH, Cui Y. Adv Mater 2018;30:1802152.

    Article  Google Scholar 

  66. Fang YS, Chen GR, Bick M, Chen J. Smart textiles for personalized thermoregulation. Chem Soc Rev 2021;50:9357.

    Article  CAS  Google Scholar 

  67. Choi SJ, Park JY, Hyun WJ, Kim JW, Kim JM, Lee YB, Song CY, Hwang HJ, Kim JH, Hyeon TH, Kim DH. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 2015;9:6626.

    Article  CAS  Google Scholar 

  68. Celle C, Mayousse C, Moreau E, Basti H, Carella A, Simonato JP. Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res 2012;5:427.

    Article  CAS  Google Scholar 

  69. Yue XJ, Zhang T, Yang DY, Qiu FX, Wei GY, Zhou H. Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 2019;63:103808.

    Article  CAS  Google Scholar 

  70. Tafreshi OA, Mosanenzadeh SG, Karamikamkar S, Saadatnia Z, Park CB, Naguib HE. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Mater Today Chem 2022;23:100736.

    Article  CAS  Google Scholar 

  71. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes—the route toward applications. Science 2002;297:787.

    Article  CAS  Google Scholar 

  72. Jang HS, Jeon SK, Nahm SH. The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon 2011;49:111.

    Article  CAS  Google Scholar 

  73. Wang YJ, Cui Y, Shao ZY, Gao WW, Fan W, Liu TX, Bai H. Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments. Chem Eng J 2020;390:124623.

    Article  CAS  Google Scholar 

  74. Liu ZW, Lyu J, Fang D, Zhang XT. Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano 2019;13:5703.

    Article  CAS  Google Scholar 

  75. Wang ZQ, Yang HW, Li Y, Zheng XH. Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles. ACS Appl Mater Interfaces 2020;12:15726.

    Article  CAS  Google Scholar 

  76. Liu YX, Zhang YF, Xiong XK, Ge P, Wu JK, Sun J, Wang JJ, Zhuo QQ, Qin CX, Dai LX. Strategies for preparing continuous ultraflexible and ultrastrong poly(vinyl alcohol) aerogel Fibers with excellent thermal insulation. Macromol Mater Eng 2021;306:2100399.

    Article  CAS  Google Scholar 

  77. Yu YF, Zheng GC, Dai K, Zhai W, Zhou KK, Jia YY, Zheng G, Zhang ZC, Liu CT, Shen CY. Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity. Mater Horiz 2021;8:1037.

    Article  CAS  Google Scholar 

  78. Zhou J, Hsieh YL. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy 2020;68:104305.

    Article  CAS  Google Scholar 

  79. Zhou W, Gong XB, Li Y, Si Y, Zhang SC, Yu JY, Ding B. Environmentally friendly waterborne polyurethane nanofibrous membranes by emulsion electrospinning for waterproof and breathable textiles. Chem Eng J 2022;427:130925.

    Article  CAS  Google Scholar 

  80. Liu H, Zhang SC, Liu LF, Yu JY, Ding B. High-performance filters from biomimetic wet-adhesive nanoarchitectured networks. J Mater Chem A 2020;8:18955.

    Article  CAS  Google Scholar 

  81. Zhang JC, Liu LF, Si Y, Yu JY, Ding B. Electrospun nanofibrous membranes: an effective arsenal for the purification of emulsified oily wastewater. Adv Funct Mater 2020;30:2002192.

    Article  CAS  Google Scholar 

  82. Bayan MAH, Taromi FA, Lanzi M, Pierini F. Enhanced efficiency in hollow core electrospun nanofiber-based organic solar cells. Sci Rep 2021;11:21144.

    Article  Google Scholar 

  83. Monaca AL, Girard G, Savoie S, Veillette R, Krachkovskiy S, Pierini F, Vijh A, Rosei F, Paolella A. Influence of TiIV substitution on the properties of a Li1.5Al0.5Ge1.5(PO4)3 nanofiber-based solid electrolyte. Nanoscale. 2022;14: 5094.

  84. Yan JH, Huang YL, Zhang YY, Peng W, Xia SH, Yu JY, Ding B. Facile synthesis of bimetallic fluoride heterojunctions on defect-enriched porous carbon nanofibers for efficient ORR catalysts. Nano Lett 2021;21:2618.

    Article  CAS  Google Scholar 

  85. Ziai Y, Petronella F, Rinoldi C, Nakielski P, Zakrzewska A, Kowalewski TA, Augustyniak W, Li XR, Calogero A, Sabała I, Ding B, De Sio L, Pierini F. Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications. NPG Asia Mater 2022;14:18.

    Article  CAS  Google Scholar 

  86. Xue JJ, Wu T, Dai YQ, Xia YN. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 2019;119:5298.

    Article  CAS  Google Scholar 

  87. Xiang B, Zhang R, Zeng XJ, Luo YL, Luo ZY. An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv Fiber Mater 2022;4:1058.

    Article  Google Scholar 

  88. Shi MK, Shen MM, Guo XY, Jin XX, Cao YX, Yang YY, Wang WJ, Wang JF. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 2021;15:11396.

    Article  CAS  Google Scholar 

  89. Huang QJ, Zhu Y. Patterning of Metal nanowire networks: methods and applications. ACS Appl Mater Interfaces 2021;13:60736.

    Article  CAS  Google Scholar 

  90. Gao Q, Lauster T, Kopera BAF, Retsch M, Agarwal S, Greiner A. Breathable and flexible dual-sided nonwovens with adjustable infrared optical performances for smart textile. Adv Funct Mater 2021;32:2108808.

    Article  Google Scholar 

  91. Zhou XX, Song WF, Zhu GZ. A facile approach for fabricating silica dioxide/reduced graphene oxide coated cotton fabrics with multifunctional properties. Cellulose 2020;27:2927.

    Article  CAS  Google Scholar 

  92. Zhuo TT, Xin BJ, Chen ZM, Xu YQ, Zhou X, Yu J. Enhanced thermal insulation properties of PI nanofiber membranes achieved by doping with SiO2 nanoparticles. Eur Polym J 2021;153:110489.

    Article  CAS  Google Scholar 

  93. Nan CW, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 1997;81:6692.

    Article  CAS  Google Scholar 

  94. Hüsing N, Schubert U. Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Edit 1998;37:22.

    Article  Google Scholar 

  95. Huang JW, Yu HY, Abdalkarim SYH, Marek J, Militky J, Li YZ, Yao JM. Electrospun Polyethylene glycol/polyvinyl alcohol composite nanofibrous membranes as shape-stabilized solid–solid phase change materials. Adv Fiber Mater 2020;2:167.

    Article  CAS  Google Scholar 

  96. Haghighat F, Hosseini Ravandi SA, Esfahany MN, Valipouri A, Zarezade Z. Thermal performance of electrospun core-shell phase change fibrous layers at simulated body conditions. Appl Therm Eng 2019;161:113924.

    Article  Google Scholar 

  97. Bao YQ, Lyu J, Liu ZW, Ding Y, Zhang XT. Bending stiffness-directed fabricating of kevlar aerogel-confined organic phase-change fibers. ACS Nano 2021;15:15180.

    Article  CAS  Google Scholar 

  98. Lu Y, Xiao XD, Fu J, Huan CM, Qi S, Zhan YJ, Zhu YQ, Xu G. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem Eng J 2019;355:532.

    Article  CAS  Google Scholar 

  99. Wang JM, Li QX, Liu D, Chen C, Chen ZQ, Hao J, Li YW, Zhang J, Naebe M, Lei WW. High temperature thermally conductive nanocomposite textile by “green” electrospinning. Nanoscale 2018;10:16868.

    Article  CAS  Google Scholar 

  100. Gavrilenko O, Wang X. Functionalized nanofibrous coating on cotton fabrics. Cellulose 2019;26:4175.

    Article  CAS  Google Scholar 

  101. Carlberg B, Ye LL, Liu J. Polymer-metal nanofibrous composite for thermal management of microsystems. Mater Lett 2012;75:229.

    Article  CAS  Google Scholar 

  102. Heikkilä P, Sipilä A, Peltola M, Harlin A, Taipale A. Electrospun PA-66 coating on textile surfaces. Text Res J 2016;77:864.

    Article  Google Scholar 

  103. Jia YR, Gong S, Zhang S, Zhao SK, Qin Z, Pan K. Design, Preparation and properties of bio-inspired hierarchical structure yarns with enhanced thermal insulation and water transfer ability. Chem Res Chin Univ 2021;37:558.

    Article  CAS  Google Scholar 

  104. Valipour P, Babaahmadi V, Nasouri K. Fabrication of poly(methyl methacrylate) nanofibers and polyethylene nonwoven with sandwich structures for thermal insulator application. Adv Polym Technol 2014;33:21440.

    Article  Google Scholar 

  105. Qiu K, Elhassan A, Tian TH, Yin X, Yu JY, Li ZL, Ding B. Highly flexible, efficient, and sandwich-structured infrared radiation heating fabric. ACS Appl Mater Interfaces 2020;12:11016.

    Article  CAS  Google Scholar 

  106. Liu YM, Xu YS, Avila R, Liu C, Xie ZQ, Wang LD, Yu XG. 3D printed microstructures for flexible electronic devices. Nanotechnology 2019;30:414001.

    Article  CAS  Google Scholar 

  107. Si Y, Yu JY, Tang XM, Ge JL, Ding B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 2014;5:5802.

    Article  Google Scholar 

  108. Wu HY, Cai H, Zhang SC, Yu JY, Ding B. Ultralight, superelastic, and washable nanofibrous sponges with rigid-flexible coupling architecture enable reusable warmth retention. Nano Lett 2022;22:830.

    Article  CAS  Google Scholar 

  109. Lu XY, Si Y, Zhang SC, Yu JY, Ding B. In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv Funct Mater 2021;31:2103117.

    Article  CAS  Google Scholar 

  110. Zhang SC, Xing M, Li BY. Recent advances in musculoskeletal local drug delivery. Acta Biomater 2019;93:135.

    Article  CAS  Google Scholar 

  111. Li YY, Cao LT, Yin X, Si Y, Yu JY, Ding B. Semi‐interpenetrating polymer network biomimetic structure enables superelastic and thermostable nanofibrous aerogels for cascade filtration of PM2.5. Adv Funct Mater 2020;30:1910426.

  112. Song MY, Jiang JG, Qin HF, Ren XY, Jiang F. Flexible and super thermal insulating cellulose nanofibril/emulsion composite aerogel with quasi-closed pores. ACS Appl Mater Interfaces 2020;12:45363.

    Article  CAS  Google Scholar 

  113. Hu ZA, Yan SQ, Li XF, You RC, Zhang Q, Kaplan DL. Natural silk nanofibril aerogels with distinctive filtration capacity and heat-retention performance. ACS Nano 2021;15:8171.

    Article  CAS  Google Scholar 

  114. Jiang SH, Uch B, Agarwal S, Greiner A. Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl Mater Interfaces 2017;9:32308.

    Article  CAS  Google Scholar 

  115. Zhu J, Lv SS, Yang TH, Huang T, Yu H, Zhang QH, Zhu MF. Facile and green strategy for designing ultralight, flexible, and multifunctional PVA nanofiber-based aerogels. Adv Sustain Syst 2020;4:1900141.

    Article  CAS  Google Scholar 

  116. Si Y, Wang XQ, Dou LY, Yu JY, Ding B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv 2018;4:eaas8925.

  117. Wang F, Dou LY, Dai JW, Li YY, Huang LQ, Si Y, Yu JY, Ding B. In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew Chem Int Edit 2020;59:8285.

    Article  CAS  Google Scholar 

  118. Si Y, Wang XQ, Yan CC, Yang L, Yu JY, Ding B. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv Mater 2016;28:9512.

    Article  CAS  Google Scholar 

  119. Zong DD, Cao LT, Yin X, Si Y, Zhang SC, Yu JY, Ding B. Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nat Commun 2021;12:6599.

    Article  CAS  Google Scholar 

  120. Cao LT, Si Y, Yin X, Yu JY, Ding B. Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption. ACS Appl Mater Interfaces 2019;11:35333.

    Article  CAS  Google Scholar 

  121. Li YY, Cao LT, Yin X, Si Y, Yu JY, Ding B. Ultrafine, self-crimp, and electret nano-wool for low-resistance and high-efficiency protective filter media against PM0.3. J Colloid Interface Sci 2020;578:565.

    Article  CAS  Google Scholar 

  122. Bonino CA, Efimenko K, Jeong SI, Krebs MD, Alsberg E, Khan SA. Three-dimensional electrospun alginate nanofiber mats via tailored charge repulsions. Small 2012;8:1928.

    Article  CAS  Google Scholar 

  123. Zong DD, Cao LT, Li YY, Yin X, Si Y, Yu JY, Ding B. Interlocked dual-network and superelastic electrospun fibrous sponges for efficient low-frequency noise absorption. Small Struct 2020;1:2000004.

    Article  Google Scholar 

  124. Wu HY, Li YY, Zhao L, Wang S, Tian YC, Si Y, Yu JY, Ding B. Stretchable and superelastic fibrous sponges tailored by “stiff-soft” bicomponent electrospun fibers for warmth retention. ACS Appl Mater Interfaces 2020;12:27562.

    Article  CAS  Google Scholar 

  125. Wu HY, Zhao L, Zhang SC, Si Y, Yu JY, Ding B. Ultralight and mechanically robust fibrous sponges tailored by semi-interpenetrating polymer networks for warmth retention. ACS Appl Mater Interfaces 2021;13:18165.

    Article  CAS  Google Scholar 

  126. Yan QS, Xin BJ, Chen ZM, Liu Y. Enhancement in photothermal conversion property of polypyrrole-decorated polyurethane/zirconium carbide fibrous membrane. Mater Today Commun 2021;28:102584.

    Article  CAS  Google Scholar 

  127. Wu HY, Zhao L, Si Y, Zhang S, Yu J, Ding B. Ultralight and superelastic fibrous sponges with effective heat preservation and photo-thermal conversion for personal cold protection. Compos Commun 2021;25:100766.

    Article  Google Scholar 

  128. Zhang RH, Gong XB, Wang S, Tian YC, Liu YT, Zhang SC, Yu JY, Ding B. Superelastic and fire-retardant nano-/microfibrous sponges for high-efficiency warmth retention. ACS Appl Mater Interfaces 2021;13:58027.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51873031, 52103050, and 52103023), the Science and Technology Commission of Shanghai Municipality (No. 21ZR1401800), and the Shanghai Sailing Program (No. 21YF1400700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ding.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, C., Wang, F. et al. Recent Advances in Ultrafine Fibrous Materials for Effective Warmth Retention. Adv. Fiber Mater. 5, 847–867 (2023). https://doi.org/10.1007/s42765-022-00209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00209-9

Keywords

Navigation