Skip to main content

Advertisement

Log in

Multi-color Tunable and White Circularly Polarized Luminescent Composite Nanofibers Electrospun from Chiral Helical Polymer

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Circularly polarized luminescence (CPL)-active nanomaterials have attracted tremendous attention. However, it is still a big challenge to conveniently fabricate multi-color and white CPL-active nanomaterials on a large scale. Herein, a simple and scalable approach to achieve the above goals is presented. Multicolor CPL-active nanofibers are fabricated from chiral helical substituted polyacetylene, achiral fluorescent dyes and polyacrylonitrile via uniaxial electrospinning; the highest luminescence dissymmetry factor (glum) of the resulting nanofibers can reach 10− 2. Furthermore, white CPL-active nanofibers are obtained by coaxial electrospinning, in which the resulting core-shell structure has excellent adjustability and can be utilized to physically isolate different fluorescent dyes to reduce energy transfer efficiency; therefore, stable white CPL emissions can be achieved with high glum values up to 10− 3. Notably, the prepared white-emission CPL nanofibrous films show bright white circularly polarized light when coated on UV chips, demonstrating their future application in constructing low-cost and flexible light-emitting devices such as circularly polarized light-emitting diodes.

Graphical Abstract

Multi-color tunable and white circularly polarized luminescence (CPL)-active nanofibers are prepared from chiral helical polymers and commercial fluorescence dyes via electrospinning process. The obtained composite nanofibers exhibit considerable luminescence dissymmetry factor (glum), with the highest glum up to 10−2. White circularly polarized light-emitting diodes are further fabricated by packaging the white CPL nanofiber film on UV chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang S, Hu DP, Guan XY, Cai SL, Shi G, Shuai ZG, Zhang J, Peng Q, Wan XH. Brightening up circularly polarized luminescence of monosubstituted polyacetylene by conformation control: mechanism, switching, and sensing. Angew Chem Int Ed. 2021;60:21918.

    Article  CAS  Google Scholar 

  2. Maeda K, Nozaki M, Hashimoto K, Shimomura K, Hirose D, Nishimura T, Watanabe G, Yashima E. Helix-sense-selective synthesis of right- and left-handed helical luminescent poly(diphenylacetylene)s with memory of the macromolecular helicity and their helical structures. J Am Chem Soc. 2020;142:7668.

    Article  CAS  Google Scholar 

  3. Wu ZG, Han HB, Yan ZP, Luo XF, Wang Y, Zheng YX, Zuo JL, Pan Y. Chiral octahydro-binaphthol compound-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence with superior EQE of 32.6% and extremely low efficiency roll-off. Adv Mater. 2019;31:1900524.

    Article  Google Scholar 

  4. Jiang HJ, Jiang YQ, Han JL, Zhang L, Liu MH. Helical nanostructures: chirality transfer and a photodriven transformation from superhelix to nanokebab. Angew Chem Int Ed. 2019;58:785.

    Article  CAS  Google Scholar 

  5. Han ZS, Wang KY, Guo YF, Chen WJ, Zhang JL, Zhang XR, Siligardi G, Yang SH, Zhou Z, Sun PC, Shi W, Cheng P. Cation-induced chirality in a bifunctional metal-organic framework for quantitative enantioselective recognition. Nat Commun. 2019;10:5117.

    Article  Google Scholar 

  6. Gong ZL, Zhu XF, Zhou ZH, Zhang SW, Yang D, Zhao B, Zhang YP, Deng JP, Cheng YX, Zheng YX, Zang SQ, Kuang H, Duan PF, Yuan MJ, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu MH. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Sci China Chem. 2021;64:2060.

    Article  CAS  Google Scholar 

  7. Qu D, Zheng HZ, Jiang HJ, Xu Y, Tang ZY. Chiral photonic cellulose films enabling mechano/chemo responsive selective reflection of circularly polarized light. Adv Opt Mater. 2019;7:1801395.

    Article  Google Scholar 

  8. Gao R, Cao D, Guan Y, Yan DP. Flexible self-supporting nanofibers thin films showing reversible photochromic fluorescence. ACS Appl Mater Interfaces. 2015;7:9904.

    Article  CAS  Google Scholar 

  9. Gao R, Cao D, Guan Y, Yan DP. Fast and reversible humidity-responsive luminescent thin films. Ind Eng Chem Res. 2016;55:125.

    Article  CAS  Google Scholar 

  10. Yan DP, Williams GR, Zhao M, Li CM, Fan GL, Yang HJ. Flexible free-standing luminescent two-component fiber films with tunable hierarchical structures based on hydrogen-bonding architecture. Langmuir. 2013;29:15673.

    Article  CAS  Google Scholar 

  11. Zhou B, Yan DP. Color-tunable persistent luminescence in 1D zinc–organic halide microcrystals for single-component white light and temperature-gating optical waveguides. Chem Sci. 2022;13:7429.

    Article  CAS  Google Scholar 

  12. Gao R, Kodaimati MS, Yan DP. Recent advances in persistent luminescence based on molecular hybrid materials. Chem Soc Rev. 2021;50:5564.

    Article  CAS  Google Scholar 

  13. Li SZ, Lu B, Fang XY, Yan DP. Manipulating light-induced dynamic macro-movement and static photonic properties within 1D isostructural hydrogen-bonded molecular cocrystals. Angew Chem Int Ed. 2020;59:22623.

    Article  CAS  Google Scholar 

  14. Rahmani M, Faridi-Majidi R, Khani MM, Mashaghi A, Noorizadeh F, Ghanbari H. Cross-linked PMS/PLA nanofibers with tunable mechanical properties and degradation rate for biomedical applications. Eur Polym J. 2020;130:109633.

    Article  CAS  Google Scholar 

  15. Zhang L, Wang TY, Shen ZC, Liu MH. Chiral nanoarchitectonics: towards the design, self-assembly, and function of nanoscale chiral twists and helices. Adv Mater. 2016;28:1044.

    Article  CAS  Google Scholar 

  16. Huo SW, Duan PF, Jiao TF, Peng QM, Liu MH. Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew Chem Int Ed. 2017;56:12174.

    Article  CAS  Google Scholar 

  17. Han JL, You J, Li XG, Duan PF, Liu MH. Full-color tunable circularly polarized luminescent nanoassemblies of achiral AIEgens in confined chiral nanotubes. Adv Mater. 2017;29:1606503.

    Article  Google Scholar 

  18. Goto T, Okazaki Y, Ueki M, Kuwahara Y, Takafuji M, Oda R, Ihara H. Induction of strong and tunable circularly polarized luminescence of nonchiral, nonmetal, low-molecular-weight fluorophores using chiral nanotemplates. Angew Chem Int Ed. 2017;56:2989.

    Article  CAS  Google Scholar 

  19. Xu L, Wang C, Li YX, Xu XH, Zhou L, Liu N, Wu ZQ. Crystallization-driven asymmetric helical assembly of conjugated block copolymers and the aggregation induced white-light emission and circularly polarized luminescence. Angew Chem Int Ed. 2020;59:16675.

    Article  CAS  Google Scholar 

  20. Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev. 2016;116:962.

    Article  Google Scholar 

  21. Babu SS, Praveen VK, Ajayaghosh A. Functional π-gelators and their applications. Chem Rev. 2014;114:1973.

    Article  CAS  Google Scholar 

  22. Kumar J, Tsumatori H, Yuasa J, Kawai T, Nakashima T. Self-discriminating termination of chiral supramolecular polymerization: tuning the length of nanofibers. Angew Chem Int Ed. 2015;54:5943.

    Article  CAS  Google Scholar 

  23. Shen ZC, Wang TY, Shi L, Tang ZY, Liu MH. Strong circularly polarized luminescence from the supramolecular gels of an achiral gelator: tunable intensity and handedness. Chem Sci. 2015;6:4267.

    Article  CAS  Google Scholar 

  24. Zhao B, Gao XB, Pan K, Deng JP. Chiral helical polymer/perovskite hybrid nanofibers with intense circularly polarized luminescence. ACS Nano. 2021;15:7463.

    Article  CAS  Google Scholar 

  25. Li PP, Feng J, Pan K, Deng JP. Preparation and chirality investigation of electrospun nanofibers from optically active helical substituted polyacetylenes. Macromolecules. 2020;53:602.

    Article  CAS  Google Scholar 

  26. Zhao B, Pan K, Deng JP. Combining chiral helical polymer with achiral luminophores for generating full-color, on–off, and switchable circularly polarized luminescence. Macromolecules. 2019;52:376.

    Article  CAS  Google Scholar 

  27. Zhao B, Pan K, Deng JP. Intense circularly polarized luminescence contributed by helical chirality of monosubstituted polyacetylenes. Macromolecules. 2018;51:7104.

    Article  CAS  Google Scholar 

  28. Xue JJ, Wu T, Dai YQ, Xia YN. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119:5298.

    Article  CAS  Google Scholar 

  29. Lee JKY, Chen N, Peng SJ, Li LL, Tian LL, Thakor N, Ramakrishna S. Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog Polym Sci. 2018;86:40.

    Article  CAS  Google Scholar 

  30. Zhang ZG, Deng JP, Zhao WG, Wang JM, Yang WT. Synthesis of optically active poly(N-propargylsulfamides) with helical conformation. J Polym Sci A Polym Chem. 2007;45:500.

    Article  CAS  Google Scholar 

  31. Schrock RR, Osborn JA. π-Bonded complexes of the tetraphenylborate ion with rhodium (I) and iridium (I). Inorg Chem. 1970;9:2339.

    Article  CAS  Google Scholar 

  32. Wang Z, Zhu CY, Mo JT, Fu PY, Zhao YW, Yin SY, Jiang JJ, Pan M, Su CY. White-light emission from dual-way photon energy conversion in a dye-encapsulated metal–organic framework. Angew Chem Int Ed. 2019;58:9752.

    Article  CAS  Google Scholar 

  33. Wen YH, Sheng TL, Zhu XQ, Zhuo C, Su SD, Li HR, Hu SM, Zhu QL, Wu XT. Introduction of red-green-blue fluorescent dyes into a metal–organic framework for tunable white light emission. Adv Mater. 2017;29:1700778.

    Article  Google Scholar 

  34. Qin Z, Wang QT, Wang CZ, Xu DF, Ma GP, Pan K. Electrospun janus nanofibers for white-light emission through efficient spatial isolation to control two-step energy transfer. J Mater Chem C. 2019;7:1065.

    Article  CAS  Google Scholar 

  35. Shimomura K, Ikai T, Kanoh S, Yashima E, Maeda K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat Chem. 2014;6:429.

    Article  CAS  Google Scholar 

  36. Yashima E, Maeda K, Okamoto Y. Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature. 1999;399:449.

    Article  CAS  Google Scholar 

  37. Li ZQ, Gong ZL, Shao JY, Yao JN, Zhong YW. Full-color and white circularly polarized luminescence of hydrogen-bonded ionic organic microcrystals. Angew Chem Int Ed. 2021;60:14595.

    Article  CAS  Google Scholar 

  38. Cai SL, Chen JX, Wang S, Zhang J, Wan XH. Allostery-mimicking self-assembly of helical poly(phenylacetylene) block copolymers and the chirality transfer. Angew Chem Int Ed. 2021;60:9686.

    Article  CAS  Google Scholar 

  39. Shi G, Dai X, Xu Q, Shen J, Wan XH. Enantioseparation by high-performance liquid chromatography on proline-derived helical polyacetylenes. Polym Chem. 2021;12:242.

    Article  CAS  Google Scholar 

  40. Zhang DY, Song C, Deng JP, Yang WT. Chiral microspheres consisting purely of optically active helical substituted polyacetylene: the first preparation via precipitation polymerization and application in enantioselective crystallization. Macromolecules. 2012;45:7329.

    Article  CAS  Google Scholar 

  41. Chen B, Deng JP, Cui X, Yang WT. Optically active helical substituted polyacetylenes as chiral seeding for inducing enantioselective crystallization of racemic N-(tert-butoxycarbonyl)alanine. Macromolecules. 2011;44:7109.

    Article  CAS  Google Scholar 

  42. Zheng D, Zheng L, Yu CY, Zhan YL, Wang Y, Jiang H. Significant enhancement of circularly polarized luminescence dissymmetry factors in quinoline oligoamide foldamers with absolute helicity. Org Lett. 2019;21:2555.

    Article  CAS  Google Scholar 

  43. Zinna F, Di Bari L. Lanthanide circularly polarized luminescence: bases and applications.Chirality. 2015;27:1.

    Article  CAS  Google Scholar 

  44. Li PP, Deng JP. Switchable chiroptical flexible films based on chiral helical superstructure: handedness inversion and dissymmetric adjustability by stretching. Adv Funct Mater. 2021;31:2105315.

    Article  CAS  Google Scholar 

  45. Ikai T, Okubo M, Wada Y. Helical assemblies of one-dimensional supramolecular polymers composed of helical macromolecules: generation of circularly polarized light using an infinitesimal chiral source. J Am Chem Soc. 2020;142:3254.

    Article  CAS  Google Scholar 

  46. Yang L, Wang F, Auphedeous DIY, Feng CL. Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels. Nanoscale. 2019;11:14210.

    Article  CAS  Google Scholar 

  47. Kundu S, Sk B, Pallavi P, Giri A, Patra A. Molecular engineering approaches towards all-organic white light emitting materials. Chem Eur J. 2020;26:5557.

    Article  CAS  Google Scholar 

  48. Zhang C, Yan ZP, Dong XY, Han Z, Li S, Fu T, Zhu YY, Zheng YX, Niu YY, Zang SQ. Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence. Adv Mater. 2020;32:2002914.

    Article  CAS  Google Scholar 

  49. Ding R, Dong FX, An MH, Wang XP, Wang MR, Li XB, Feng J, Sun HB. High-color-rendering and high-efficiency white organic light-emitting devices based on double-doped organic single crystals. Adv Funct Mater. 2019;29:1807606.

    Article  Google Scholar 

  50. Hong YJ, Lee CH, Yoon A, Kim M, Seong HK, Chung HJ, Sone C, Park YJ, Yi GC. Visible-color-tunable light-emitting diodes. Adv Mater. 2011;23:3284.

    Article  CAS  Google Scholar 

  51. Chen PK, Li QC, Grindy S, Holten-Andersen N. White-light-emitting lanthanide metallogels with tunable luminescence and reversible stimuli-responsive properties. J Am Chem Soc. 2015;137:11590.

    Article  CAS  Google Scholar 

  52. Bu J, Watanabe K, Hayasaka H, Akagi K. Photochemically colour-tuneable white fluorescence illuminants consisting of conjugated polymer nanospheres. Nat Commun. 2014;5:3799.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51973011, 52003022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Zhao or Jianping Deng.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Gao, X., Zhao, B. et al. Multi-color Tunable and White Circularly Polarized Luminescent Composite Nanofibers Electrospun from Chiral Helical Polymer. Adv. Fiber Mater. 4, 1632–1644 (2022). https://doi.org/10.1007/s42765-022-00196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00196-x

Keywords

Navigation