Skip to main content
Log in

Amplified polarization properties of electrospun nanofibers containing fluorescent dyes and helical polymer

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Nanofibers with the cationic fluorescent molecules, 1-pyrenemethylamine hydrochloride (PyrMA) and α,β,γ,δ-tetrakis(1-methylpyridinium-4-yl)porphyrin p-toluenesulfonate (TMPyP), in the presence of complementary anionic chiral polysaccharide, hyaluronic acid (HA) and transparent polymer, polyethylene oxide (PEO) were successfully prepared using an electrospinning technique. The results showed that the fluorescence spectra of electrospun nanofibers (ENFs) of PEO-HA-PyrMA exhibit a higher amount of pyrene excimer emission when the [PyrMA]/[HA] ratio was increased from 0.5 to 1, while the concentration of TMPyP had no remarkable effect on the fluorescence of the PEO-HA-TMPyP ENFs. From circular dichroism (CD) characterization, the ENFs of both dyes exhibit stronger intensities in the apparent CD spectra upon increasing the dye ratio. Moreover, they also showed higher CD intensities when compared with those of solutions and thin films prepared using other methods. The apparent CD in this work was proved to mainly originate from linear dichroism (LD) and linear birefringence (LB) obtained by macroscopic alignment along the electrospinning process. These results suggest the advantages of molecular orientation via electrospinning, together with chirality induction by incorporation of a chiral HA polymer. The enhancement of these polarization properties provides great possibilities for improving fluorescentchiral nanofibers for further optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. Palumbo, G. Pitarresi, A. Albanese, F. Calascibetta and G. Giammona, Self-assembling and auto-crosslinkable hyaluronic acid hydrogels with a fibrillar structure, Acta Biomater., 2010, 6, 195–204.

    Article  CAS  Google Scholar 

  2. P. Thirupathi, J.-Y. Park, L. N. Neupane, M. Y. L. N. Kishore and K.-H. Lee, Pyrene Excimer-Based Peptidyl Chemosensors for the Sensitive Detection of Low Levels of Heparin in 100% Aqueous Solutions and Serum Samples, ACS Appl. Mater. Interfaces, 2015, 7, 14243–14253.

    Article  CAS  Google Scholar 

  3. Y. M. Hwang, N. Kwon, S. K. Kim and Y. J. Jang, Chiral Selective Stacking of a Cationic Porphyrin along Z-Form Poly[d(A-T)2], J. Phys. Chem. B, 2017, 121, 2104–2110.

    Article  CAS  Google Scholar 

  4. S. Jiang, X. Chen and M. Liu, The pH stimulated reversible loading and release of a cationic dye in a layer-by-layer assembled DNA/PAH film, J. Colloid Interface Sci., 2004, 277, 396–403.

    Article  CAS  Google Scholar 

  5. L.-N. Zhu, S.-J. Zhao, B. Wu, X.-Z. Li and D.-M. Kong, A New Cationic Porphyrin Derivative (TMPipEOPP) with Large Side Arm Substituents: A Highly Selective G-Quadruplex Optical Probe, PLoS One, 2012, 7, e35586.

    Article  CAS  Google Scholar 

  6. H.-S. Jang, Y. Wang, Y. Lei and M.-P. Nieh, Controllable Formation of Pyrene (C16 H10) Excimers in Polystyrene/ Tetrabutylammonium Hexafluorophosphate Films through Solvent Vapor and Temperature Annealing, J. Phys. Chem. C, 2013, 117, 1428–1435.

    Article  CAS  Google Scholar 

  7. S. Martwiset, S. Nijpanich, A. Banturngsaksiri, M. Sriring, T. Pandhumas and S. Youngme, Pyrene-doped electrospun PMMA-PVC fibers for ferric ion detection, J. Appl. Polym. Sci., 2013, 130, 3205–3211.

    Article  CAS  Google Scholar 

  8. A. Senthamizhan, A. Celebioglu, S. Bayir, M. Gorur, E. Doganci, F. Yilmaz and T. Uyar, Highly Fluorescent Pyrene-Functional Polystyrene Copolymer Nanofibers for Enhanced Sensing Performance of TNT, ACS Appl. Mater. Interfaces, 2015, 7, 21038–21046.

    Article  CAS  Google Scholar 

  9. X. Sun, Y. Liu, G. Shaw, A. Carrier, S. Dey, J. Zhao and Y. Lei, Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution, ACS Appl. Mater. Interfaces, 2015, 7, 13189–13197.

    Article  CAS  Google Scholar 

  10. J. Kang, O. Kaczmarek, J. Liebscher and L. Dähne, Prevention of H-Aggregates Formation in Cy5 Labeled Macromolecules, Int. J. Polym. Sci., 2010, 2010, e264781.

    Article  Google Scholar 

  11. H. Jintoku, T. Sagawa, M. Takafuji and H. Ihara, Chirally self-assembled porphyrin nanowires assisted by L-glutamide-derived lipid for excitation energy transfer, Org. Biomol. Chem., 2009, 7, 2430–2434.

    Article  CAS  Google Scholar 

  12. K. Kano, T. Nakajima, M. Takei and S. Hashimoto, Self Aggregation of Cationic Porphyrin in Water, Bull. Chem. Soc. Jpn., 1987, 60, 1281–1287.

    Article  CAS  Google Scholar 

  13. T. Sagawa, S. Fukugawa, T. Yamada and H. Ihara, Self-Assembled Fibrillar Networks through Highly Oriented Aggregates of Porphyrin and Pyrene Substituted by Dialkyl l-Glutamine in Organic Media, Langmuir, 2002, 18, 7223–7228.

    Article  CAS  Google Scholar 

  14. K. Sudha, S. Sundharamurthi, S. Karthikaikumar, K. Abinaya and P. Kalimuthu, Switching of Förster to Dexter Mechanism of Short-Range Energy Transfer in meso-Anthrylporphyrin, J. Phys. Chem. C, 2017, 121, 5941–5948.

    Article  CAS  Google Scholar 

  15. A. V. Udal'tsov, Characteristics of donor-acceptor complexes formed in porphyrin-polymer systems and their photoacti- vation in electron transfer photoreaction, J. Photochem. Photobiol., B, 1997, 37, 31–39.

    Article  CAS  Google Scholar 

  16. C. Carati, N. Gasparini, S. Righi, F. Tinti, V. Fattori, A. Savoini, A. Cominetti, R. Po, L. Bonoldi and N. Camaioni, Pyrene-Fullerene Interaction and Its Effect on the Behavior of Photovoltaic Blends, J. Phys. Chem. C, 2016, 120, 6909–6919.

    Article  CAS  Google Scholar 

  17. M. Kasha, H. R. Rawls and M. Ashraf El-Bayoumi, The exciton model in molecular spectroscopy, Pure Appl. Chem., 1965, 11, 371–392.

    Article  CAS  Google Scholar 

  18. J. Singh and P. K. Dutta, Preparation, circular dichroism induced helical conformation and optical property of chito- san acid salt complexes for biomedical applications, Int. J. Biol. Macromol., 2009, 45, 384–392.

    Article  CAS  Google Scholar 

  19. I. Bouamaied, T. Nguyen, T. Rühl and E. Stulz, Supramolecular helical porphyrin arrays using DNA as a scaffold, Org. Biomol. Chem., 2008, 6, 3888–3891.

    Article  CAS  Google Scholar 

  20. H. Ihara, T. Yamada, M. Nishihara, T. Sakurai, M. Takafuji, H. Hachisako and T. Sagawa, Reversible gelation in cyclo- hexane of pyrene substituted by dialkyl l-glutamide: photo- physics of the self-assembled fibrillar network, J. Mol. Liq., 2004, 111, 73–76.

    Article  CAS  Google Scholar 

  21. S. Lee, S. H. Jeon, B. J. Kim, S. W. Han, H. G. Jang and S. K. Kim, Classification of CD and absorption spectra in the Soret band of H2 TMPyP bound to various synthetic polynucleotides, Biophys. Chem., 2001, 92, 35–45.

    Article  CAS  Google Scholar 

  22. T. Moriuchi, K. Ebisu, C. Katano and T. Hirao, Polypeptide- induced Fluorescence of Pyrene Derivatives Based on Coordination Programming, Chem. Lett., 2014, 43, 1101–1103.

    Article  CAS  Google Scholar 

  23. H. Tobata and T. Sagawa, Specific excitonic interactions in the aggregates of hyaluronic acid and cyanine dyes with different lengths of methine group, Photochem. Photobiol. Sci., 2016, 15, 329–333.

    Article  CAS  Google Scholar 

  24. J. Li, A. He, C. C. Han, D. Fang, B. S. Hsiao and B. Chu, Electrospinning of Hyaluronic Acid (HA) and HA/Gelatin Blends, Macromol. Rapid Commun., 2006, 27, 114–120.

    Article  CAS  Google Scholar 

  25. S. Yao, X. Wang, X. Liu, R. Wang, C. Deng and F. Cuil, Effects of ambient relative humidity and solvent properties on the electrospinning of pure hyaluronic acid nanofibers, J. Nanosci. Nanotechnol., 2013, 13, 4752–4758.

    Article  CAS  Google Scholar 

  26. G. Chen, J. Guo, J. Nie and G. Ma, Preparation, characteriz- ation, and application of PEO/HA core shell nanofibers based on electric field induced phase separation during electrospinning, Polymer, 2016, 83, 12–19.

    Article  CAS  Google Scholar 

  27. A. Liess, A. Lv, A. Arjona-Esteban, D. Bialas, A.-M. Krause, V. Stepanenko, M. Stolte and F. Wurthner, Exciton Coupling of Merocyanine Dyes from H- to J-type in the Solid State by Crystal Engineering, Nano Lett., 2017, 17, 1719–1726.

    Article  CAS  Google Scholar 

  28. T. Buffeteau, F. Lagugne-Labarthet and C. Sourisseau, Vibrational Circular Dichroism in General Anisotropic Thin Solid Films: Measurement and Theoretical Approach, Appl. Spectrosc., 2005, 59, 732–745.

    Article  CAS  Google Scholar 

  29. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen and N. I. Zheludev, Asymmetric propagation of electromagnetic waves through a planar chiral structure, Phys. Rev. Lett., 2006, 97, 167401.

    Article  CAS  Google Scholar 

  30. T. Narushima and H. Okamoto, Strong Nanoscale Optical Activity Localized in Two-Dimensional Chiral Metal Nanostructures, J. Phys. Chem. C, 2013, 117, 23964–23969.

    Article  CAS  Google Scholar 

  31. V. Beachley and X. Wen, Effect of electrospinning para- meters on the nanofiber diameter and length, Mater. Sci. Eng., C, 2009, 29, 663–668.

    Article  CAS  Google Scholar 

  32. G. Viswanadam and G. G. Chase, Modified electric fields to control the direction of electrospinning jets, Polymer, 2013, 54, 1397–1404.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr T. Yabutsuka and Prof. R. Hagiwara of the Graduate School of Energy Science, Kyoto University for the utilization of the SEM apparatus and the optical microscope. We thank the Kewpie Corporation for providing the HA powder. We are also grateful to Prof. T. Morii and Assoc. Prof. E. Nakata of the Institute of Advanced Energy, Kyoto University for giving us the opportunity to use the CD instrument. We would like to thank Dr R. Oda (Research Director of CNRS, University of Bordeaux), Dr A. D. Guerzo (Prof. of University of Bordeaux), Dr T. Buffeteau (Research Director of CNRS, University of Bordeaux) and Ms K. Nagashima (Kyoto University) for fruitful scientific discussions. This work is partially supported by JST SICORP (CPLhelixCNPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sagawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaerkitcha, N., Sagawa, T. Amplified polarization properties of electrospun nanofibers containing fluorescent dyes and helical polymer. Photochem Photobiol Sci 17, 342–351 (2018). https://doi.org/10.1039/c7pp00413c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00413c

Navigation