Skip to main content
Log in

Freestanding and Ultra-flexible PAN/ZIF-67 Hybrid Membrane with Controlled Porosity for High-Performance and High-Safety Lithium Batteries Separator

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Herein, a flexible ZIF-67/PAN hybrid membrane was successfully prepared by the incorporation of ZIF-67 nanoparticles and PAN nanofibers through electrospinning method. The hybrid membrane presented tomatoes on sticks structures with one single PAN fiber stringing series of ZIF-67 nanoparticles. The morphology, electrolyte wettability, heat resistance, flexibility, and electrochemical properties of the electrospun ZIF-67/PAN membranes were discussed. Among the membranes prepared with different percentage of ZIF-67, the 30% ZIF-67/PAN membrane exhibited outstanding heat shrinkage resistance (remained intact at 200 ℃ for 1 h), excellent electrolyte uptake (556.39%), wide electrochemical window (~ 5.25 V) and high ionic conductivity (2.98 mS cm−1). When used as lithium-ion batteries (LIBs) separators, the cells assembled by 30% ZIF-67/PAN membrane presented excellent rate capacity and high capacity retention of 86.9% after 300 cycles at 1C. More importantly, the cells assembled with ZIF-67/PAN membranes repeated bent for 1000 times also exhibited high rate performance and maintained capacity retention of 92% after 100 cycles at 1 C. The characterization and the electrochemical testing suggest the electrospinning prepared ZIF-67/PAN flexible membranes can be expected to be used as potential separator for advanced batteries with high safety and high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun R, Qin ZX, Liu XL, Wang CH, Lu SJ, Zhang YF, Fan HS. Intercalation mechanism of the ammonium vanadate (NH4V4O10) 3D decussate superstructure as the cathode for high-performance aqueous zinc-ion batteries. ACS Sustain Chem Eng 2021;9:11769.

    Article  CAS  Google Scholar 

  2. Zhu H, Li Z, Xu F, Qin Z, Sun R, Wang C, Lu S, Zhang Y, Fan H. Ni3Se4@CoSe2 hetero-nanocrystals encapsulated into CNT-porous carbon interpenetrating frameworks for high-performance sodium ion battery. J Colloid Interface Sci 2022;611:718.

    Article  CAS  Google Scholar 

  3. Liu X, Wang M, Qin B, Zhang Y, Liu Z, Fan H. 2D–2D MXene/ReS2 hybrid from Ti3C2Tx MXene conductive layers supporting ultrathin ReS2 nanosheets for superior sodium storage. Chem Eng J 2021;431:133796.

    Article  Google Scholar 

  4. Li XT, Liang HJ, Liu XL, Sun R, Qin ZX, Fan HS, Zhang YF. Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. Chem Eng J 2021;425:130657.

    Article  CAS  Google Scholar 

  5. Liu XL, Xu F, Li ZY, Liu ZT, Yang W, Zhang YF, Fan HS, Yang HY. Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord Chem Rev 2022;464:214544.

    Article  CAS  Google Scholar 

  6. Sheng J, Tong SH, He ZB, Yang RD. Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 2017;24:4103.

    Article  CAS  Google Scholar 

  7. Bashirpour-Bonab H. Thermal behavior of lithium batteries used in electric vehicles using phase change materials. In J Energy Res 2020;44:12583.

    Article  CAS  Google Scholar 

  8. Sun R, Qin ZX, Li ZY, Fan HS, Lu SJ. Binary zinc-cobalt metal-organic framework derived mesoporous ZnCo2O4@NC polyhedron as a high-performance lithium-ion battery anode. Dalton Trans 2020;49:14237.

    Article  CAS  Google Scholar 

  9. Li Z, Peng Z, Sun R, Qin Z, Liu X, Wang C, Fan H, Lu S. Super Na+ half/full batteries and ultrafast Na+ diffusion kinetics of cobalt-nickel selenide from assembling Co0.5Ni0.5Se2@NC nanosheets into cross-stacked architecture. Chin J Chem 2021;39:2599.

    Article  CAS  Google Scholar 

  10. Sun R, Dong SY, Xu F, Li ZY, Wang CH, Lu SJ, Fan HS. Co-intercalation strategy of constructing partial cation substitution of ammonium vanadate (NH4)2V6O16 for stable zinc ion storage. Dalton Trans 2022;51:7607.

    Article  CAS  Google Scholar 

  11. Li Z, Sun R, Qin Z, Liu X, Wang C, Fan H, Zhang Y, Lu S. Recent progress of nanostructured metal chalcogenides and their carbon-based hybrids for advanced potassium battery anodes. Mater Chem Front 2021;5:4401.

    Article  CAS  Google Scholar 

  12. Susai FA, Sclar H, Shilina Y, Penki TR, Raman R, Maddukuri S, Maiti S, Halalay IC, Luski S, Markovsky B, Aurbach D. Horizons for Li-ion batteries relevant to electro-mobility: high-specific-energy cathodes and chemically active separators. Adv Mater 2018;30:1801348.

    Article  Google Scholar 

  13. Rana M, Li M, Huang X, Luo B, Gentle I, Knibbe R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J Mater Chem A 2019;7:6596.

    Article  CAS  Google Scholar 

  14. Costa CM, Lee YH, Kim JH, Lee SY, Lanceros-Méndez S. Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Mater 2019;22:346.

    Article  Google Scholar 

  15. Li YF, Li QH, Tan ZC. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. J Power Sources 2019;443:227262.

    Article  CAS  Google Scholar 

  16. Yuan MQ, Liu K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J Energy Chem 2020;43:58.

    Article  Google Scholar 

  17. Xu KL, Qin Y, Xu T, Xie XH, Deng JX, Qi JL, Huang C. Combining polymeric membranes with inorganic woven fabric: towards the continuous and affordable fabrication of a multifunctional separator for lithium-ion battery. J Membr Sci 2019;592:117364.

    Article  CAS  Google Scholar 

  18. Feng GH, Li ZH, Mi LW, Zheng JY, Feng XM, Chen WH. Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. J Power Sources 2018;376:177.

    Article  CAS  Google Scholar 

  19. Cheng P, Guo PQ, Sun K, Zhao YG, Liu DQ, He DY. CeO2 decorated graphene as separator modification material for capture and boost conversion of polysulfide in lithium-sulfur batteries. J Membr Sci 2021;619:118780.

    Article  CAS  Google Scholar 

  20. Han DH, Zhang M, Lu PX, Wan YL, Chen QL, Niu HY, Yu ZW. A multifunctional separator with Mg(OH)2 nanoflake coatings for safe lithium-metal batteries. J Energy Chem 2021;52:75.

    Article  CAS  Google Scholar 

  21. Wang H, Wu JJ, Cai C, Guo J, Fan HS, Zhu CZ, Dong HX, Zhao N, Xu J. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries. ACS Appl Mater Interfaces 2014;6:5602.

    Article  CAS  Google Scholar 

  22. Li DD, Yang JF, Xu X, Wang XW, Chen JT, Xu J, Zhao N. Synergistic inhibitory effect of ultralight CNTs-COOH@Fe3O4 modified separator on polysulfides shuttling for high-performance lithium-sulfur batteries. J Membr Sci 2020;611:118300.

    Article  CAS  Google Scholar 

  23. Chen P, Ren HM, Yan LT, Shen JX, Wang TL, Li GD, Chen SW, Cong XT, Xie JX, Li W. Metal-organic frameworks enabled high-performance separators for safety-reinforced lithium ion battery. ACS Sustain Chem Eng 2019;7:16612.

    Article  CAS  Google Scholar 

  24. Zhang C, Liang HQ, Pi JK, Wu GP, Xu ZK. Polypropylene separators with robust mussel-inspired coatings for high lithium-ion battery performances. Chin J Polym Sci 2019;37:1015.

    Article  CAS  Google Scholar 

  25. Sheng L, Xie X, Sun ZP, Zhao MM, Gao B, Pan JJ, Bai YZ, Song SJ, Liu GJ, Wang T, Huang XL, He JP. Role of separator surface polarity in boosting the lithium-ion transport property for a lithium-based battery. ACS Appl Energy Mater 2021;4:5212.

    Article  CAS  Google Scholar 

  26. Wei ZZ, Gu JY, Zhang FR, Pan ZJ, Zhao Y. Core-shell structured nanofibers for lithium ion battery separator with wide shutdown temperature window and stable electrochemical performance. ACS Appl Polym Mater 2020;2:1989.

    Article  CAS  Google Scholar 

  27. Zhang LP, Feng GH, Li XL, Cui SZ, Ying SW, Feng XM, Mi LW, Chen WH. Synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries. J Membr Sci 2019;577:137.

    Article  CAS  Google Scholar 

  28. Yang ST, Ma WH, Wang AL, Gu JF, Yi YH. A core–shell structured polyacrylonitrile@poly(vinylidene fluoride-hexafluoro propylene) microfiber complex membrane as a separator by co-axial electrospinning. RSC Adv 2018;8:23390.

    Article  CAS  Google Scholar 

  29. Jung JW, Lee CL, Yu S, Kim ID. Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 2016;4:703.

    Article  CAS  Google Scholar 

  30. Shi FY, Chen CH, Xu ZL. Recent advances on electrospun nanofiber materials for post-lithium ion batteries. Adv Fiber Mater 2021;3:275.

    Article  CAS  Google Scholar 

  31. Oh YS, Jung GY, Kim JH, Kim JH, Kim SH, Kwak SK, Lee SY. Janus-faced, dual-conductive/chemically active battery separator membranes. Adv Funct Mater 2016;26:7074.

    Article  CAS  Google Scholar 

  32. Jiang YH, Ding YH, Zhang P, Li F, Yang ZM. Temperature-dependent on/off PVP@TiO2 separator for safe Li-storage. J Membr Sci 2018;565:33.

    Article  CAS  Google Scholar 

  33. Jia SJ, Long JT, Li JW, Yang SH, Huang KL, Yang N, Liang YH, Xiao J. Biomineralized zircon-coated PVDF nanofiber separator for enhancing thermo- and electro-chemical properties of lithium ion batteries. J Mater Sci 2020;55:14907.

    Article  CAS  Google Scholar 

  34. Barbosa JC, Correia DM, Goncalves R, Bermudez VD, Silva MM, Lanceros-Mendez S, Costa CM. Enhanced ionic conductivity in poly(vinylidene fluoride) electrospun separator membranes blended with different ionic liquids for lithium ion batteries. J Colloid Interface Sci 2021;582:376.

    Article  CAS  Google Scholar 

  35. Valverde A, Gonçalves R, Silva MM, Wuttke S, Fidalgo-Marijuan A, Costa CM, Vilas-Vilela JL, Laza JM, Arriortua MI, Lanceros-Méndez S, de Luis RF. Metal-organic framework based PVDF separators for high rate cycling lithium-ion batteries. ACS Appl Energy Mater 2020;3:11907.

    Article  CAS  Google Scholar 

  36. He L, Cao JH, Liang T, Wu DY. Effect of monomer structure on properties of polyimide as LIB separator and its mechanism study. Electrochim Acta 2020;337:135838.

    Article  CAS  Google Scholar 

  37. Liang XX, Yang Y, Jin X, Huang ZH, Kang FY. The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J Membr Sci 2015;493:1.

    Article  CAS  Google Scholar 

  38. Wang Y, Wang SQ, Fang JQ, Ding LX, Wang HH. A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 2017;537:248.

    Article  CAS  Google Scholar 

  39. Boriboon D, Vongsetskul T, Limthongkul P, Kobsiriphat W, Tammawat P. Cellulose ultrafine fibers embedded with titania particles as a high performance and eco-friendly separator for lithium-ion batteries. Carbohydr Polym 2018;189:145.

    Article  CAS  Google Scholar 

  40. Chen Y, Qiu LL, Ma XY, Dong LK, Jin ZF, Xia GB, Du PF, Xiong J. Electrospun cellulose polymer nanofiber membrane with flame resistance properties for lithium-ion batteries. Carbohydr Polym 2020;234:115907.

    Article  CAS  Google Scholar 

  41. Huang FL, Xu YF, Peng B, Su YF, Jiang F, Hsieh YL, Wei QF. Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery. ACS Sustainable Chem Eng 2015;3:932.

    Article  CAS  Google Scholar 

  42. Xiao W, Cheng D, Huang L, Song J, Yang ZX, Qiao QD. An integrated separator/anode assembly based on electrospinning technique for advanced lithium-ion batteries. Electrochim Acta 2021;389:138776.

    Article  CAS  Google Scholar 

  43. Cai M, Yuan D, Zhang X, Pu Y, Liu XF, He HW, Zhang LX, Ning X. Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3D thermal crosslinking. J Power Sources 2020;461:228123.

    Article  CAS  Google Scholar 

  44. Arifeen W, Kim M, Ting D, Kurniawan R, Choi J, Yoo K, Ko TJ. Hybrid thermal resistant electrospun polymer membrane as the separator of lithium ion batteries. Mater Chem Phys 2020;245:122780.

    Article  Google Scholar 

  45. Park SR, Jung YC, Shin WK, Ahn KH, Lee CH, Kim DW. Cross-linked fibrous composite separator for high performance lithium-ion batteries with enhanced safety. J Membr Sci 2017;527:129.

    Article  CAS  Google Scholar 

  46. Ma XJ, Kolla P, Yang RD, Wang Z, Zhao Y, Smirnova AL, Fong H. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim Acta 2017;236:417.

    Article  CAS  Google Scholar 

  47. Yang LY, Cao JH, Cai BR, Liang T, Wu DY. Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries. Electrochim Acta 2021;382:138346.

    Article  CAS  Google Scholar 

  48. Wang DH, He HW, Wang XX, Yu Y, Jiang LL, Lu Y, Yu J, Zhang J, Long YZ, Ruan KQ. Grain size influence on the flexibility and luminous intensity of inorganic CaTiO3:Pr3+ crystal nanofibers. Ceram Int 2021;47:31329.

    Article  CAS  Google Scholar 

  49. Wang DH, Jiang LL, Yu Y, Lu Y, Meng ZF, Bian R, Yao WL, Zhang YC, Long YZ, Wang XX. Effect of grain size on macroscopic flexibility and luminescence intensity of inorganic (Ba, Ca)TiO3:Pr3+. J Alloys Compd 2022;912:165163.

    Article  CAS  Google Scholar 

  50. Chen MX, Wang Z, Li KW, Wang XD, Wei L. Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv Fiber Mater 2022;3:1.

    Article  Google Scholar 

  51. Cheng C, Li S, Xia Y, Ma L, Nie CX, Roth C, Thomas A, Haag R. Atomic Fe–Nx coupled open-mesoporous carbon nanofibers for efficient and bioadaptable oxygen electrode in Mg–air batteries. Adv Mater 2018;30:1802669.

    Article  Google Scholar 

  52. Ouyang JY. Application of intrinsically conducting polymers in flexible electronics. SmartMat 2021;2:263.

    Article  CAS  Google Scholar 

  53. Liu XL, Liu ZT, Yang W, Wang MQ, Qin BY, Zhang YF, Liu ZL, Fan HS. In situ fragmented and confined CoP nanocrystals into sandwich-structure MXene@CoP@NPC heterostructure for superior sodium-ion storage. Mater Today Chem 2022;26:101002.

    Article  CAS  Google Scholar 

  54. Wang LJ, Wang ZH, Sun Y, Liang X, Xiang HF. Sb2O3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator. J Membr Sci 2019;572:512.

    Article  CAS  Google Scholar 

  55. Arifeen W, Choi J, Yoo K, Shim J, Ko TJ. A nano-silica/polyacrylonitrile/polyimide composite separator for advanced fast charging lithium-ion batteries. Chem Eng J 2021;417:128075.

    Article  CAS  Google Scholar 

  56. Wang M, Liu X, Qin B, Li Z, Zhang Y, Yang W, Fan H. In-situ etching and ion exchange induced 2D-2D MXene@Co9S8/CoMo2S4 heterostructure for superior Na+ storage. Chem Eng J 2022. https://doi.org/10.1016/j.cej.2022.138508.

    Article  Google Scholar 

  57. Li XT, Liang HJ, Qin BY, Wang MQ, Zhang YF, Fan HS. Rational design of heterostructured bimetallic sulfides (CoS2/NC@VS4) with VS4 nanodots decorated on CoS2 dodecahedron for high-performance sodium and potassium ion batteries. J Colloid Interface Sci 2022;625:41.

    Article  CAS  Google Scholar 

  58. Gao Y, Sang X, Chen YF, Li Y, Liu BB, Sheng JL, Feng Y, Li L, Liu HQ, Wang XW, Kuang CX, Zhai YY. Polydopamine modification electrospun polyacrylonitrile fibrous membrane with decreased pore size and dendrite mitigation for lithium ion battery. J Mater Sci 2020;55:3549.

    Article  CAS  Google Scholar 

  59. Fu QS, Zhang W, Muhammad IP, Chen XD, Zeng Y, Wang BT, Zhang SY. Coaxially electrospun PAN/HCNFs@PVDF/UiO-66 composite separator with high strength and thermal stability for lithium-ion battery. Microporous Mesoporous Mater 2021;311:110724.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51563002, 52101243), the “100-level” Innovative Talents Project of Guizhou Province China ([2016] 5653), Natural Science Foundation of Guangdong Province (2020A1515010886) and the Science and Technology Planning Project of Guangzhou (202102010373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haosen Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.I. : Advanced Fiber Materials for Energy Storage and Conversion.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4301 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Zhu, H., Wan, P. et al. Freestanding and Ultra-flexible PAN/ZIF-67 Hybrid Membrane with Controlled Porosity for High-Performance and High-Safety Lithium Batteries Separator. Adv. Fiber Mater. 4, 1511–1524 (2022). https://doi.org/10.1007/s42765-022-00190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00190-3

Keywords

Navigation