Skip to main content
Log in

Fiber Solar Cells from High Performances Towards Real Applications

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The evolution of electronic systems towards small, flexible, portable and human-centered forms drives the demand for on-body power supplies with lightweight and high flexibility. Fiber solar cells that can be integrated into soft and lightweight textiles are considered as potential sustainable power sources for the next generation of wearable electronics. To this end, they have been extensively investigated in the past decade aiming to improve their photovoltaic performances, but there is still a big gap between the high-performance devices and real applications. Herein, the key advances of configurations, fabrications and performances of fiber solar cells are highlighted and analyzed. Based on the current progress, the latest ideas with regard to the remaining challenges and opportunities beyond the reach of the previous studies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from ref [16]; Copyright 2020, The Royal Society of Chemistry. c Schematic showing the anodization of a Ti wire. d, e SEM images by side (d) and cross-sectional (e) views of an anodized Ti wire, respectively; Reproduced with permission from ref [40]; Copyright 2010, American Chemical Society. f Schematic of the hydrothermal reaction process of fibers. g SEM image of CoS nanoplates grown on carbon fibers by hydrothermal reaction; Reproduced with permission from ref [49]; Copyright 2018, Springer Nature. h SEM image of NiCo2S4 nanosheets grown on carbon fibers by hydrothermal reaction; Reproduced with permission from ref [48]; Copyright 2017, Springer Nature. i Schematic illustrating the deposition of materials on a fiber by thermal evaporation process. j, k SEM images of the top (j) and cross-sectional (k) views of a CH3NH3PbI3 layer prepared on a mesoporous TiO2 layer by the vapor-assisted deposition; Reproduced with permission from ref [52]; Copyright 2019, WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. l Schematic of the continuous wrapping of CNT sheets on fibers. m, n SEM images of CNT sheets wrapped on a rubber fiber at low (m) and high (n) magnifications; Reproduced with permission from ref [53]; Copyright 2014, WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang L, Wang LY, Zhang Y, Pan J, Li SY, Sun XM, Zhang B, Peng HS. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv Funct Mater 2018;28:1804456.

    Article  Google Scholar 

  2. Hu XL, Tian MW, Xu TL, Sun XT, Sun B, Sun CC, Liu XQ, Zhang XJ, Qu LJ. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 2020;14:559.

    Article  CAS  Google Scholar 

  3. Wei YH, Li XS, Wang YF, Hirtz T, Guo ZF, Qiao YC, Cui TR, Tian H, Yang Y, Ren T-L. Graphene-based multifunctional textile for sensing and actuating. ACS Nano 2021;15:17738.

    Article  CAS  Google Scholar 

  4. Wang JJ, Wang LY, Feng JY, Tang CQ, Sun XM, Peng HS. Long-term in vivo monitoring of chemicals with fiber sensors. Adv Fiber Mater 2021;3:47.

    Article  CAS  Google Scholar 

  5. Shi X, Zuo Y, Zhai P, Shen JH, Yang YW, Gao Z, Liao M, Wu JX, Wang JW, Xu XJ, Tong Q, Zhang B, Wang BJ, Sun XM, Zhang LH, Pei QB, Jin DY, Chen PN, Peng HS. Large-area display textiles integrated with functional systems. Nature 2021;591:240.

    Article  CAS  Google Scholar 

  6. Choi HW, Shin D-W, Yang JJ, Lee SH, Figueiredo C, Sinopoli S, Ullrich K, Jovancic P, Marrani A, Momente R, Gomes J, Branquinho R, Emanuele U, Lee HL, Bang SY, Jung S-M, Han SD, Zhan SJ, Harden-Chaters W, Suh Y-H, Fan X-B, Lee TH, Chowdhury M, Choi YJ, Nicotera S, Torchia A, Moncunill FM, Candel VG, Duraes N, Chang KS, Cho SH, Kim C-H, Lucassen M, Nejim A, Jimenez D, Springer M, Lee Y-W, Cha SN, Sohn JI, Igreja R, Song KM, Barquinha P, Martins R, Amaratunga GAJ, Occhipinti LG, Chhowalla M, Kim JM. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat Commun 2022;13:814.

    Article  CAS  Google Scholar 

  7. Zou JY, Ling FY, Shi X, Xu KL, Wu HY, Chen PN, Zhang B, Ta D, Peng HS. An electromagnetic fiber acoustic transducer with dual modes of loudspeaker and microphone. Small 2021;17:2102052.

    Article  CAS  Google Scholar 

  8. Yan W, Noel G, Loke G, Meiklejohn E, Khudiyev T, Marion J, Rui GC, Lin JN, Cherston J, Sahasrabudhe A, Wilbert J, Wicaksono I, Hoyt RW, Missakian A, Zhu L, Ma C, Joannopoulos J, Fink Y. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 2022;603:616.

    Article  CAS  Google Scholar 

  9. Takamatsu S, Lonjaret T, Ismailova E, Masuda A, Itoh T, Malliaras GG. Wearable keyboard using conducting polymer electrodes on textiles. Adv Mater 2016;28:4485.

    Article  CAS  Google Scholar 

  10. Jeon S-B, Park S-J, Kim W-G, Tcho I-W, Jin I-K, Han J-K, Kim DW, Choi Y-K. Self-powered wearable keyboard with fabric based triboelectric nanogenerator. Nano Energy 2018;53:596.

    Article  CAS  Google Scholar 

  11. Zhang NN, Huang F, Zhao SL, Lv XH, Zhou YH, Xiang SW, Xu SM, Li YZ, Chen GR, Tao CY, Nie Y, Chen J, Fan X. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2020;2:1260.

    Article  Google Scholar 

  12. Chen GR, Li YZ, Bick M, Chen J. Smart textiles for electricity generation. Chem Rev 2020;120:3668.

    Article  CAS  Google Scholar 

  13. Qiu LB, He SS, Yang JH, Jin F, Deng J, Sun H, Cheng XL, Guan GZ, Sun XM, Zhao HB, Peng HS. An all-solid-state fiber-type solar cell achieving 9.49% efficiency. J. Mater. Chem. A 2016;4:10105.

    Article  CAS  Google Scholar 

  14. Xiang SW, Zhang NN, Fan X. From fiber to fabric: progress towards photovoltaic energy textile. Adv Fiber Mater 2021;3:76.

    Article  CAS  Google Scholar 

  15. Liu P, Gao Z, Xu LM, Shi X, Fu XM, Li K, Zhang B, Sun XM, Peng HS. Polymer solar cell textiles with interlaced cathode and anode fibers. J Mater Chem A 2018;6:19947.

    Article  CAS  Google Scholar 

  16. Xu LM, Fu XM, Liu F, Shi X, Zhou XF, Liao M, Chen CR, Xu F, Wang BJ, Zhang B, Peng HS. A perovskite solar cell textile that works at −40 to 160 °C. J Mater Chem A 2020;8:5476.

    Article  CAS  Google Scholar 

  17. Baps B, Eber-Koyuncu M, Koyuncu M. Ceramic based solar cells in fiber form. Key Eng Mater 2001;206–213:937.

    Article  Google Scholar 

  18. Sun H, Zhang Y, Zhang J, Sun XM, Peng HS. Energy harvesting and storage in 1D devices. Nat Rev Mater 2017;2:17023.

    Article  CAS  Google Scholar 

  19. Xu XJ, Xie SL, Zhang Y, Peng HS. The rise of fiber electronics. Angew Chem Int Ed 2019;58:13643.

    Article  CAS  Google Scholar 

  20. Fan X, Chu ZZ, Wang FZ, Zhang C, Chen L, Tang YW, Zou DC. Wire-shaped flexible dye-sensitized solar cells. Adv Mater 2008;20:592.

    Article  CAS  Google Scholar 

  21. Zhang LS, Song LL, Tian QW, Kuang XY, Hu JQ, Liu JS, Yang JM, Chen ZG. Flexible fiber-shaped CuInSe2 solar cells with single-wire-structure: design, construction and performance. Nano Energy 2012;1:769.

    Article  CAS  Google Scholar 

  22. Zhang ZT, Yang ZB, Wu ZW, Guan GZ, Pan SW, Zhang Y, Li HP, Deng J, Sun BQ, Peng HS. Weaving efficient polymer solar cell wires into flexible power textiles. Adv Energy Mater 2014;4:1301750.

    Article  Google Scholar 

  23. Qiu LB, Deng J, Lu X, Yang ZB, Peng HS. Integrating perovskite solar cells into a flexible fiber. Angew Chem Int Ed 2014;53:10425.

    Article  CAS  Google Scholar 

  24. Liu DY, Li Y, Zhao SL, Cao AY, Zhang C, Liu ZW, Bian ZQ, Liu ZF, Huang CH. Single-layer graphene sheets as counter electrodes for fiber-shaped polymer solar cells. RSC Adv 2013;3:13720.

    Article  CAS  Google Scholar 

  25. Lee M, Ko YH, Jun YS. Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode. J Mater Chem A 2015;3:19310.

    Article  CAS  Google Scholar 

  26. Hu HW, Yan K, Peng M, Yu X, Chen S, Chen BX, Dong B, Gao X, Zou DC. Fiber-shaped perovskite solar cells with 5.3% efficiency. J. Mater. Chem. A 2016;4:3901.

    Article  CAS  Google Scholar 

  27. Li R, Xiang X, Tong X, Zou JY, Li QW. Wearable double-twisted fibrous perovskite solar cell. Adv Mater 2015;27:3831.

    Article  CAS  Google Scholar 

  28. Liu DY, Zhao MY, Li Y, Bian ZQ, Zhang LH, Shang YY, Xia XY, Zhang S, Yun DQ, Liu ZW, Cao AY, Huang CH. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. ACS Nano 2012;6:11027.

    Article  CAS  Google Scholar 

  29. Zhang NN, Chen J, Huang Y, Guo WW, Yang J, Du J, Fan X, Tao CY. A Wearable all-solid photovoltaic textile. Adv Mater 2016;28:263.

    Article  Google Scholar 

  30. Gao Z, Liu P, Fu XM, Xu LM, Zuo Y, Zhang B, Sun XM, Peng HS. Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber electrodes. J Mater Chem A 2019;7:14447.

    Article  CAS  Google Scholar 

  31. He RR, Day TD, Krishnamurthi M, Sparks JR, Sazio PJ, Gopalan V, Badding JV. Silicon p-i-n junction fibers. Adv Mater 2013;25:1461.

    Article  CAS  Google Scholar 

  32. Chen T, Qiu LB, Cai ZB, Gong F, Yang ZB, Wang ZS, Peng HS. Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett 2012;12:2568.

    Article  CAS  Google Scholar 

  33. Qiu LB, He SS, Yang JH, Deng J, Peng HS. Fiber-shaped perovskite solar cells with high power conversion efficiency. Small 2016;12:2419.

    Article  CAS  Google Scholar 

  34. Hu HW, Dong B, Chen BX, Gao X, Zou DC. High performance fiber-shaped perovskite solar cells based on lead acetate precursor. Sustain Energy Fuels 2018;2:79.

    Article  CAS  Google Scholar 

  35. Wang D, Hou SC, Wu HW, Zhang C, Chu ZZ, Zou DC. Fiber-shaped all-solid state dye sensitized solar cell with remarkably enhanced performance via substrate surface engineering and TiO2 film modification. J Mater Chem 2011;21:6383.

    Article  CAS  Google Scholar 

  36. Liu GC, Peng M, Song WX, Wang H, Zou DC. An 807% efficient fiber dye-sensitized solar cell based on a TiO2 micron-core array and multilayer structure photoanode. Nano Energy 2015;11:341.

    Article  Google Scholar 

  37. Lee MR, Eckert RD, Forberich K, Dennler G, Brabec CJ, Gaudiana RA. Solar power wires based on organic photovoltaic materials. Science 2009;324:232.

    Article  CAS  Google Scholar 

  38. He SS, Qiu LB, Fang X, Guan GZ, Chen PN, Zhang ZT, Peng HS. Radically grown obelisk-like ZnO arrays for perovskite solar cell fibers and fabrics through a mild solution process. J Mater Chem A 2015;3:9406.

    Article  CAS  Google Scholar 

  39. Bedeloglu A, Demir A, Bozkurt Y, Sariciftci N. A photovoltaic fiber design for smart textiles. Text Res J 2009;80:1065.

    Article  Google Scholar 

  40. Liu ZY, Misra M. Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 2010;4:2196.

    Article  CAS  Google Scholar 

  41. Chen T, Qiu LB, Kia HG, Yang ZB, Peng HS. Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires. Adv Mater 2012;24:4623.

    Article  CAS  Google Scholar 

  42. Fang X, Yang ZB, Qiu LB, Sun H, Pan SW, Deng J, Luo YF, Peng HS. Core-sheath carbon nanostructured fibers for efficient wire-shaped dye-sensitized solar cells. Adv Mater 2014;26:1694.

    Article  CAS  Google Scholar 

  43. Yang ZB, Sun H, Chen T, Qiu LB, Luo YF, Peng HS. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45 % energy conversion efficiency. Angew. Chem. Int. Ed. 2013;52:7545.

    Article  CAS  Google Scholar 

  44. Jiang YS, Sun H, Peng HS. Synthesis and photovoltaic application of platinum-modified conducting aligned nanotube fiber. Sci China Mater 2015;58:289.

    Article  CAS  Google Scholar 

  45. Fu XM, Sun H, Xie SL, Zhang J, Pan ZY, Liao M, Xu LM, Li ZE, Wang BJ, Sun XM, Peng HS. A fiber-shaped solar cell showing a record power conversion efficiency of 10%. J Mater Chem A 2018;6:45.

    Article  CAS  Google Scholar 

  46. Weintraub B, Wei YG, Wang ZL. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew Chem Int Ed 2009;121:9143.

    Article  Google Scholar 

  47. Chen L, Yin HX, Zhou Y, Dai H, Yu T, Liu JG, Zou ZG. In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells. Nanoscale 2016;8:2304.

    Article  CAS  Google Scholar 

  48. Chi ZX, Shen J, Zhang H, Chen L. NiCo2S4 nanosheets in situ grown on carbon fibers as an efficient counter electrode for fiber-shaped dye-sensitized solar cells. J Mater Sci Mater Electron 2017;28:10640.

    Article  CAS  Google Scholar 

  49. Shen M, Yin WJ, Li J, Zhang H, Chen L. One-step facile hydrothermal synthetic route to prepare CoS nanoplates as counter electrode material for fiber-shaped dye-sensitized solar cells. J Mater Sci Mater Electron 2018;29:13709.

    Article  CAS  Google Scholar 

  50. Yang YS, Wei JD, Zhang GM, Sun WT, Zhou WS. One step hydrothermal synthesis of vertical Ni-Mo-S nanosheet array as the counter electrode for FDSC. J Alloys Compd 2018;764:890.

    Article  CAS  Google Scholar 

  51. Zhang JX, Wang ZP, Li XL, Yang J, Song CH, Li YP, Cheng JL, Guan Q, Wang B. Flexible platinum-free fiber-shaped dye sensitized solar cell with 10.28% efficiency. ACS Appl. Energy Mater. 2019;2:2870.

    Article  CAS  Google Scholar 

  52. Dong B, Hu J, Xiao XY, Tang S, Gao X, Peng ZY, Zou DC. High-efficiency fiber-shaped perovskite solar cell by vapor-assisted deposition with a record efficiency of 10.79%. Adv. Mater. Technol. 2019;4:1900131.

    Article  CAS  Google Scholar 

  53. Yang ZB, Deng J, Sun XM, Li HP, Peng HS. Stretchable, wearable dye-sensitized solar cells. Adv Mater 2014;26:2643.

    Article  CAS  Google Scholar 

  54. Ardhi REA, Tran MX, Wang MX, Liu GC, Lee JK. Chemically tuned, bi-functional polar interlayer for TiO2 photoanodes in fibre-shaped dye-sensitized solar cells. J Mater Chem A 2020;8:2549.

    Article  CAS  Google Scholar 

  55. Li HP, Guo JJ, Sun H, Fang X, Wang DH, Peng HS. Stable hydrophobic ionic liquid gel electrolyte for stretchable fiber-shaped dye-sensitized solar cell. ChemNanoMat 2015;1:399.

    Article  CAS  Google Scholar 

  56. Li HP, Yang ZB, Qiu LB, Fang X, Sun H, Chen PN, Pan SW, Peng HS. Stable wire-shaped dye-sensitized solar cells based on eutectic melts. J Mater Chem A 2014;2:3841.

    Article  CAS  Google Scholar 

  57. Sun H, Li HP, You X, Yang ZB, Deng J, Qiu LB, Peng HS. Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells. J Mater Chem A 2014;2:345.

    Article  CAS  Google Scholar 

  58. Rein M, Favrod VD, Hou C, Khudiyev T, Stolyarov A, Cox J, Chung C-C, Chhav C, Ellis M, Joannopoulos J, Fink Y. Diode fibres for fabric-based optical communications. Nature 2018;560:214.

    Article  CAS  Google Scholar 

  59. Liao M, Wang C, Hong Y, Zhang YF, Cheng XL, Sun H, Huang XL, Ye L, Wu JX, Shi X, Kang XY, Zhou XF, Wang JW, Li PZ, Sun XM, Chen PN, Wang BJ, Wang YG, Xia YY, Cheng YH, Peng HS. Industrial scale production of fibre batteries by a solution-extrusion method. Nat Nanotechnol 2022;17:372.

    Article  CAS  Google Scholar 

  60. Hong Y, Chen XL, Liu GJ, Hong DS, He SS, Wang BJ, Sun XM, Peng HS. One-step production of continuous supercapacitor fibers for a flexible power textile. Chin J Polym Sci 2019;37:737.

    Article  CAS  Google Scholar 

  61. Martinsen FA, Smeltzer BK, Nord M, Hawkins T, Ballato J, Gibson UJ. Silicon-core glass fibres as microwire radial-junction solar cells. Sci Rep 2014;4:6283.

    Article  CAS  Google Scholar 

  62. Zhao Y, Chen CR, Qiu YY, Mei TL, Ye L, Feng H, Zhang Y, Wang LY, Guo Y, Sun XM, Wu JX, Peng HS. Injectable fiber electronics for tumor treatment. Adv Fiber Mater 2022;4:246.

    Article  CAS  Google Scholar 

  63. O’Connor B, Pipe KP, Shtein M. Fiber based organic photovoltaic devices. Appl Phys Lett 2008;92:193306.

    Article  Google Scholar 

  64. Hou SC, Cai X, Wu HW, Lv ZB, Wang D, Fu YP, Zou DC. Flexible, metal-free composite counter electrodes for efficient fiber-shaped dye-sensitized solar cells. J Power Sources 2012;215:164.

    Article  CAS  Google Scholar 

  65. Liang J, Zhang GM, Sun WT, Dong P. High efficiency flexible fiber-type dye-sensitized solar cells with multi-working electrodes. Nano Energy 2015;12:501.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by STCSM (20JC1414902, 21511104900), SHMEC (2017-01-07-00-07-E00062) and the China Postdoctoral Science Foundation (KLH1717008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huisheng Peng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, W., Zhu, Z., Sun, X. et al. Fiber Solar Cells from High Performances Towards Real Applications. Adv. Fiber Mater. 4, 1293–1303 (2022). https://doi.org/10.1007/s42765-022-00184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00184-1

Keywords

Navigation