Skip to main content

Advertisement

Log in

Advanced Flexible Carbon-Based Current Collector for Zinc Storage

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Carbon cloth (CC)-based electrodes have attracted extensive attention for next-generation wearable energy-storage devices due to their excellent electrical conductivity and mechanical flexibility. However, the application of conventional CC-based electrodes for zinc (Zn) storage severely hinders Zn ion transport and induces deleterious Zn dendrite growth, resulting in poor electrochemical reliability. Herein, a novel oxygen plasma-treated carbon cloth (OPCC) is rationally designed as a current collector for flexible hybrid Zn ion supercapacitors (ZISs). The modified interface of OPCC with abundant oxygenated groups enables enhanced electrolyte wettability and uniform superficial electric field distribution. A prolonged working lifespan for Zn electrodeposition is achieved by the OPCC due to the improved interfacial kinetics and homogenized ion gradient. The as-prepared hybrid ZIS also delivers excellent cycling endurance (98.5% capacity retention for 1500 cycles) with outstanding operation stability under various extreme conditions. This facile surface modification strategy provides a new way for developing future flexible electrodes for wearable electronic products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. An TC, Anaya DV, Gong S, Yap LW, Lin FG, Wang R, Yuce MR, Cheng WL. Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface. Nano Energy 2020;77:105295.

    Article  CAS  Google Scholar 

  2. Fan F, Zhou HR, Yan R, Yang CD, Zhu H, Gao Y, Ma L, Cao SJ, Cheng C, Wang YH. Anchoring Fe-N-C sites on hierarchically porous carbon sphere and CNT interpenetrated nanostructures as efficient cathodes for zinc-air batteries. ACS Appl Mater Interfaces 2021;13:41609–18.

    Article  CAS  Google Scholar 

  3. Xue LL, Fan W, Yu Y, Dong K, Liu CK, Sun YL, Zhang C, Chen WC, Lei RX, Rong K, Wang Q. A novel strategy to fabricate core-sheath structure piezoelectric yarns for wearable energy harvesters. Adv Fiber Mater 2021;3:239–50.

    Article  CAS  Google Scholar 

  4. Yan R, Ma T, Cheng MH, Tao XF, Yang Z, Ran F, Li S, Yin B, Cheng C, Yang W. Metal-organic-framework-derived nanostructures as multifaceted electrodes in metal-sulfur batteries. Adv Mater 2021;33:2008784.

    Article  CAS  Google Scholar 

  5. Wang FX, Wu XW, Yuan XH, Liu ZC, Zhang Y, Fu LJ, Zhu YS, Zhou QM, Wu YP, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 2017;46:6816–54.

    Article  CAS  Google Scholar 

  6. Li Y, Shen Q, Shen J, Ding XB, Liu T, He JH, Zhu CY, Zhao D, Zhu JD. Multifunctional fibroblasts enhanced via thermal and freeze-drying post-treatments of aligned electrospun nanofiber membranes. Adv Fiber Mater 2021;3:26–37.

    Article  CAS  Google Scholar 

  7. Wang W, Yu AF, Zhai JY, Wang ZL. Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv Fiber Mater 2021;3:394–412.

    Article  CAS  Google Scholar 

  8. Xiang SW, Zhang NN, Fan X. From fiber to fabric: progress towards photovoltaic energy textile. Adv Fiber Mater 2021;3:76–106.

    Article  CAS  Google Scholar 

  9. Wang T, Wang Y, Lei JQ, Chen KJ, Wang HX. Electrochemically induced surface reconstruction of Ni-Co oxide nanosheet arrays for hybrid supercapacitors. Exploration 2021;1:20210178.

    Article  Google Scholar 

  10. Jia H, Wang ZQ, Dirican M, Qiu S, Chan CY, Fu SH, Fei B, Zhang XW. A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J Mater Chem A 2021;9:5597–605.

    Article  CAS  Google Scholar 

  11. Yan CY, Zhu P, Jia H, Zhu JD, Selvan RK, Li Y, Dong X, Du Z, Angunawela I, Wu NQ. High-performance 3D fiber network composite electrolyte enabled with Li-ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv Fiber Mater 2019;1:46–60.

    Article  Google Scholar 

  12. Lee S, Kim H, Kim Y. Progress in organic semiconducting materials with high thermal stability for organic light-emitting devices. InfoMat 2021;3:61–81.

    Article  CAS  Google Scholar 

  13. Zhao XY, Liang XQ, Li Y, Chen QG, Chen MH. Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater 2021;42:533–69.

    Article  Google Scholar 

  14. Jia H, Ming QH, Lan CT, Liu HQ, Dirican M, Fu SH, Zhang XW. Advanced zinc anode with nitrogen-doping interface induced by plasma surface treatment. Adv Sci 2021;2103952:1–8.

    Google Scholar 

  15. Subjalearndee N, He NF, Cheng H, Tesatchabut P, Eiamlamai P, Limthongkul P, Intasanta V, Gao W, Zhang XW. Gamma((sic))-MnO2/rGO fibered cathode fabrication from wet spinning and dip coating techniques for cable-shaped Zn-ion batteries. Adv Fiber Mater 2022. https://doi.org/10.1007/s42765-021-00118-3 .

    Article  Google Scholar 

  16. Chan CY, Wang ZQ, Jia H, Ng PF, Chow L, Fei B. Recent advances of hydrogel electrolytes in flexible energy storage devices. J Mater Chem A 2021;9:2043–69.

    Article  CAS  Google Scholar 

  17. Zhu YP, Cui Y, Alshareef HN. An anode-free Zn-MnO2 battery. Nano Lett 2021;21:1446–53.

    Article  CAS  Google Scholar 

  18. Yao WT, Zou PC, Wang M, Zhan HC, Kang FY, Yang CC. Design principle, optimization strategies, and future perspectives of anode-free configurations for high-energy rechargeable metal batteries. Electrochem Energy Rev 2021;4:1–31.

    Article  Google Scholar 

  19. Tian Y, An YL, Wei CL, Xi BJ, Xiong SL, Feng JK, Qian YT. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and non-aqueous lithium metal batteries. ACS Nano 2019;13:11676–85.

    Article  CAS  Google Scholar 

  20. Adusei PK, Gbordzoe S, Kanakaraj SN, Hsieh YY, Alvarez NT, Fang YB, Johnson K, McConnell C, Shanov V. Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. J Energy Chem 2020;40:120–31.

    Article  Google Scholar 

  21. Jia H, Sun N, Dirican M, Li Y, Chen C, Zhu P, Yan CY, Zang J, Guo JS, Tao JS, Wang JS, Tang FC, Zhang XW. Electrospun kraft lignin/cellulose acetate-derived nanocarbon network as an anode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 2018;10:44368–75.

    Article  CAS  Google Scholar 

  22. Qiu PP, Yao Y, Li W, Sun Y, Jiang Z, Mei BB, Gu L, Zhang QH, Shang TT, Yu XQ, Yang JP, Fang Y, Zhu GH, Zhang ZL, Zhu XH, Zhao T, Jiang W, Fan YC, Wang LJ, Ma B, Liu LL, Yu Y, Luo W. Sub-nanometric manganous oxide clusters in nitrogen doped mesoporous carbon nanosheets for high-performance lithium-sulfur batteries. Nano Lett 2021;21:700–8.

    Article  CAS  Google Scholar 

  23. Zhu GH, Jiang Y, Yang HY, Wang HF, Fang Y, Wang L, Xie M, Qiu PP, Luo W. Constructing structurally ordered high-entropy alloy nanoparticles on nitrogen-rich mesoporous carbon nanosheets for high-performance oxygen reduction. Adv Mater 2022;2110128:1–8.

    Google Scholar 

  24. Yu H, Liu G, Wang M, Ren R, Shim G, Kim JY, Tran MX, Byun D, Lee JK. Plasma-assisted surface modification on the electrode interface for flexible fiber-shaped Zn-polyaniline batteries. ACS Appl Mater Interfaces 2020;12:5820–30.

    Article  CAS  Google Scholar 

  25. Zhang XT, Li JX, Ao HS, Liu DY, Shi L, Wang CM, Zhu YC, Qian YT. Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Mater 2020;30:337–45.

    Article  Google Scholar 

  26. Cui YH, Zhao QH, Wu XJ, Wang ZJ, Qin RZ, Wang YT, Liu MQ, Song YL, Qian GY, Song ZB, Yang LY, Pan F. Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Storage Mater 2020;27:1–8.

    Article  CAS  Google Scholar 

  27. Yi ZH, Chen GY, Hou F, Wang LQ, Liang J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater 2021;11:2003065.

    Article  CAS  Google Scholar 

  28. Zheng JX, Zhao Q, Tang T, Yin JF, Quilty CD, Renderos GD, Liu XT, Deng Y, Wang L, Bock DC, Jaye C, Zhang DH, Takeuchi ES, Takeuchi KJ, Marschilok AC, Archer LA. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019;366:645–8.

    Article  CAS  Google Scholar 

  29. Chang J, Shang J, Sun YM, Ono LK, Wang DR, Ma ZJ, Huang QY, Chen DD, Liu GQ, Cui Y, Qi YB, Zheng ZJ. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat Commun 2018;9:4480.

    Article  Google Scholar 

  30. Zhou T, Shen JD, Wang ZS, Liu J, Hu RZ, Ouyang LZ, Feng YZ, Liu H, Yu Y, Zhu M. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv Funct Mater 2020;30:1909159.

    Article  CAS  Google Scholar 

  31. Chao DL, Zhu C, Song M, Liang P, Zhang X, Tiep NH, Zhao HF, Wang J, Wang RM, Zhang H, Fan HJ. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv Mater 2018;30:1803181.

    Article  Google Scholar 

  32. Kang Z, Wu CL, Dong LB, Liu WB, Mou J, Zhang JW, Chang ZW, Jiang BZ, Wang GX, Kang FY, Xu CJ. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain Chem Eng 2019;7:3364–71.

    Article  CAS  Google Scholar 

  33. Dong W, Shi JL, Wang TS, Yin YX, Wang CR, Guo YG. 3D zinc@carbon fiber composite framework anode for aqueous Zn-MnO2 batteries. RSC Adv 2018;8:19157–63.

    Article  CAS  Google Scholar 

  34. Wang LP, Li NW, Wang TS, Yin YX, Guo YG, Wang CR. Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim Acta 2017;244:172–7.

    Article  CAS  Google Scholar 

  35. Zeng YX, Zhang XY, Qin RF, Liu XQ, Fang PP, Zheng DZ, Tong YX, Lu XH. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv Mater 2019;31:1903675.

    Article  Google Scholar 

  36. Shi XD, Xu GF, Liang SQ, Li CP, Guo S, Xie XS, Ma XM, Zhou J. Homogeneous deposition of zinc on three-dimensional porous copper foam as a superior zinc metal anode. ACS Sustain Chem Eng 2019;7:17737–46.

    Article  CAS  Google Scholar 

  37. Jia H, Dirican M, Sun N, Chen C, Yan CY, Zhu P, Dong X, Du Z, Cheng H, Guo JS, Zhang XW. Advanced ZnSnS3@rGO anode material for superior sodium-ion and lithium-ion storage with ultralong cycle life. ChemElectroChem 2019;6:1183–91.

    Article  CAS  Google Scholar 

  38. Cheng H, Yan CY, Orenstein R, Dirican M, Wei SZ, Subjalearndee N, Zhang XW. Polyacrylonitrile nanofiber-reinforced flexible single-ion conducting polymer electrolyte for high-performance, room-temperature all-solid-state Li-metal batteries. Adv Fiber Mater 2022. https://doi.org/10.1007/s42765-021-00128-1 .

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Jiangsu Province (BK20210480) and Hong Kong Scholars Program (P0035017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shou-xiang Jiang or Xiangwu Zhang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1747 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Qiu, M., Tang, C. et al. Advanced Flexible Carbon-Based Current Collector for Zinc Storage. Adv. Fiber Mater. 4, 1500–1510 (2022). https://doi.org/10.1007/s42765-022-00182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00182-3

Keywords

Navigation