Skip to main content
Log in

The Critical Roles of the Gas Flow in Fabricating Polymer Nanofibers: A Mini-review

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Polymer nanofibers attract more and more attention from academia and industry continuously due to their desirable properties, including high specific surface area, high porosity, and numerous chemically-active surface groups on the fiber surface. Gas flow was widely adopted to fabricate nanofibers such as solution blown, melt blown, gas flow-assisted melt electrospinning, and bubble electrospinning. However, a comprehensive review covered the roles that gas flow played in fabricating nanofibers, and their mechanism has not been analysed yet. This review classifies the roles of gas flow into jet initialization, jet stretching, increasing production, surface modification, and inhibition of thermal degradation, to deepen the understanding of gas flow during nanofiber preparation. The mechanism of gas flows in the above fields is reviewed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen P, Kotek R. Advances in the production of poly(ethylene naphthalate) fibers. Polym Rev 2008;48:392.

    Article  CAS  Google Scholar 

  2. Tanioka A, Takahashi M. Highly productive systems of nanofibers for novel applications. Ind Eng Chem Res 2016;55:3759.

    Article  CAS  Google Scholar 

  3. Brown TD, Daltona PD, Hutmacher DW. Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci 2016;56:116.

    Article  CAS  Google Scholar 

  4. Liao Y, Loh C-H, Tian M, Wang R, Fane AG. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog Polym Sci 2018;77:69.

    Article  CAS  Google Scholar 

  5. Zhang YZ, Lim CT, Ramakrishna S, Huang ZM. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 2005;16:933.

    Article  CAS  Google Scholar 

  6. Takasaki M, Hara K, Ohkoshi Y, Fujii T, Shimizu H, Saito M. Preparation of ultrafine polyurethane fiber web by laser-electrospinning combined with air blowing. Polym Eng Sci 2014;54:2605.

    Article  CAS  Google Scholar 

  7. Zhang LH, Duan XP, Yan X, Yu M, Ning X, Zhao Y, Long YZ. Recent advances in melt electrospinning. RSC Adv 2016;6:53400.

    Article  CAS  Google Scholar 

  8. Naeimirad M, Zadhoush A, Kotek R, Neisiany RE, Khorasani SN, Ramakrishna S. Recent advances in core/shell bicomponent fibers and nanofibers: a review. J Appl Polym Sci 2018;135:23.

    Article  Google Scholar 

  9. Jiang L, Jiang YC, Stiadle J, Wang XF, Wang LX, Li Q, Shen CY, Thibeault SL, Turng LS. Electrospun nanofibrous thermoplastic polyurethane/poly(glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications. Mater Sci Eng C Mater Biol Appl 2019;94:740.

    Article  CAS  Google Scholar 

  10. Zhou J, Hu Z, Zabihi F, Chen Z, Zhu M. Progress and perspective of antiviral protective material. Adv Fiber Mater 2020;2:123.

    Article  CAS  Google Scholar 

  11. Li Y, Shen Q, Shen J, Ding X, Liu T, He J, Zhu C, Zhao D, Zhu J. Multifunctional fibroblasts enhanced via thermal and freeze-drying post-treatments of aligned electrospun nanofiber membranes. Adv Fiber Mater 2021;3:26.

    Article  CAS  Google Scholar 

  12. Chen XX, Zhao R, Wang X, Li X, Peng F, Jin ZH, Gao XX, Yu JA, Wang C. Electrospun mupirocin loaded polyurethane fiber mats for anti-infection burn wound dressing application. J Biomater Sci Polym Ed 2017;28:162.

    Article  CAS  Google Scholar 

  13. Wang X, Nakane K. Preparation of polymeric nanofibers via immersion electrospinning. Eur Polym J 2020;134:109837.

    Article  CAS  Google Scholar 

  14. Anstey A, Chang E, Kim ES, Rizvi A, Kakroodi AR, Park CB, Lee PC. Nanofibrillated polymer systems: design, application, and current state of the art. Prog Polym Sci 2021;113:101346.

    Article  CAS  Google Scholar 

  15. Vahabi H, Wu H, Seab MR, Koo JH, Ramakrishna S. Electrospinning for developing flame retardant polymer materials: current status and future perspectives. Polymer 2021;217:123466.

    Article  CAS  Google Scholar 

  16. Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 1989;2008:29.

    Google Scholar 

  17. Sarbatly R, Sariau J, Alam M. Advances in nanofiber membrane. Mater Today Proc 2021;46:2118.

    Article  CAS  Google Scholar 

  18. Hassan MA, Yeom BY, Wilkie A, Pourdeyhimi B, Khan SA. Fabrication of nanofiber meltblown membranes and their filtration properties. J Membr Sci 2013;427:336.

    Article  CAS  Google Scholar 

  19. Tan DH, Zhou CF, Ellison CJ, Kumar S, Macosko CW, Bates FS. Meltblown fibers: influence of viscosity and elasticity on diameter distribution. J Nonnewton Fluid Mech 2010;165:892.

    Article  CAS  Google Scholar 

  20. Feng Y, Weber M, Maletzko C, Chung T-S. Delamination of single layer hollow fiber membranes induced by bi-directional phase separation. J Membr Sci 2021;622:118992.

    Article  CAS  Google Scholar 

  21. Huang W, Wang MJ, Liu CL, You J, Chen SC, Wang YZ, Liu Y. Phase separation in electrospun nanofibers controlled by crystallization induced self-assembly. J Mater Chem A 2014;2:8416.

    Article  CAS  Google Scholar 

  22. Deka M, Nath AK, Kumar A. Ionic conduction and phase separation studies in PEO-P(VdF-HFP)-LiClO4-dedoped polyaniline nanofiber composite polymer electrolytes—I. Indian J Phys 2010;84:1299.

    Article  CAS  Google Scholar 

  23. Fedorova N, Pourdeyhimi B. High strength nylon micro- and nanofiber based nonwovens via spunbonding. J Appl Polym Sci 2007;104:3434.

    Article  CAS  Google Scholar 

  24. Joisten M. The ‘island method’—a new laboratory test method to determine side-effects of plant protection products on the predatory mite Typhlodromus pyri Scheuten (Acari, Phytoseiidae). J Appl Entomol 2000;124:267.

    Article  Google Scholar 

  25. Nakata K, Fujii K, Ohkoshi Y, Gotoh Y, Nagura M, Numata M, Kamiyama M. Poly(ethylene terephthalate) nanofibers made by sea-island-type conjugated melt spinning and laser-heated flow drawing. Macromol Rapid Commun 2007;28:792.

    Article  CAS  Google Scholar 

  26. Stabler SM, Goldbach J, Stabler S, Devisme S, Chauveau J. Advancements in the production of meltblown fibres. Filtr Sep 2016;53:38.

    Google Scholar 

  27. Li L, Zhang J, Li S, Qian XM. Research progress of elastic nonwovens with meltblown technology. In: Qian XM, Liu HW, editors. Advanced textile materials Pts 1–3. Advanced materials research. Stafa-Zurich: Trans Tech Publications Ltd; 2011. p. 1247.

    Google Scholar 

  28. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup (vol 48, pg 3306, 2007). Polymer 2007;48:6180.

    Article  CAS  Google Scholar 

  29. Polat Y, Pampal ES, Stojanovska E, Simsek R, Hassanin A, Kilic A, Demir A, Yilmaz S. Solution blowing of thermoplastic polyurethane nanofibers: a facile method to produce flexible porous materials. J Appl Polym Sci 2016;133:9.

    Article  Google Scholar 

  30. Yang WM, Li HY. Principle and equipment of polymer melt differential electrospinning preparing ultrafine fiber. 2nd International on structural nano composites. IOP conference series-materials science and engineering. Bristol: Iop Publishing Ltd; 2014.

    Google Scholar 

  31. Rogalski JJ, Bastiaansen CWM, Peijs T. Rotary jet spinning review—a potential high yield future for polymer nanofibers. Nanocomposites 2017;3:97.

    Article  Google Scholar 

  32. Zhmayev E, Cho D, Joo YL. Electrohydrodynamic quenching in polymer melt electrospinning. Phys Fluids 2011;23:8.

    Article  Google Scholar 

  33. Kong CS, Yoo WS, Jo NG, Kim HS. Electrospinning mechanism for producing nanoscale polymer fibers. J Macromol Sci Part B Phys 2010;49:122.

    Article  CAS  Google Scholar 

  34. Xie S, Han WL, Jiang GJ, Chen C. Turbulent air flow field in slot-die melt blowing for manufacturing microfibrous nonwoven materials. J Mater Sci 2018;53:6991.

    Article  CAS  Google Scholar 

  35. Suzuki A, Tanizawa K. Poly(ethylene terephthalate) nanofibers prepared by CO2 laser supersonic drawing. Polymer 2009;50:913.

    Article  CAS  Google Scholar 

  36. Liu Y, He JH, Yu JY. Bubble-electrospinning: a novel method for making nanofibers. In: He J, editor. Isnd 2007: proceedings of the 2007 international symposium on nonlinear dynamics, Pts 1–4. Journal of physics series. Bristol: Iop Publishing Ltd; 2008.

    Google Scholar 

  37. He JH. Effect of temperature on surface tension of a bubble and hierarchical ruptured bubbles for nanofiber fabrication. Therm Sci 2012;16:327.

    Article  Google Scholar 

  38. Dou H, Zuo BQ, He JH. Blown bubble-spinning for fabrication of superfine fibers. Therm Sci 2012;16:1465.

    Article  Google Scholar 

  39. Liu FJ, Dou H. A modified young-laplace equation for the bubble electrospinning considering the effect of humidity. Therm Sci 2013;17:629.

    Article  Google Scholar 

  40. He JH, Kong HY, Yang RR, Dou H, Faraz N, Wang L, Feng C. Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning. Therm Sci 2012;16:1263.

    Article  Google Scholar 

  41. Yang RR, He JH, Xu L, Yu JY. Bubble-electrospinning for fabricating nanofibers. Polymer 2009;50:5846.

    Article  CAS  Google Scholar 

  42. Dalton PD, Lleixa Calvet J, Mourran A, Klee D, Moller M. Melt electrospinning of poly-(ethylene glycol-block-epsilon-caprolactone). Biotechnol J 2006;1:998.

    Article  CAS  Google Scholar 

  43. Detta N, Brown TD, Edin FK, Albrecht K, Chiellini F, Chiellini E, Dalton PD, Hutmacher DW. Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol). Polym Int 2010;59:1558.

    Article  CAS  Google Scholar 

  44. Fang J, Zhang L, Sutton D, Wang XG, Lin T. Needleless melt-electrospinning of polypropylene nanofibres. J Nanomater 2012;2012:9.

    Article  Google Scholar 

  45. Hassan MA, Anantharamaiah N, Khan SA, Pourdeyhimi B. Computational fluid dynamics simulations and experiments of meltblown fibrous media: new die designs to enhance fiber attenuation and filtration quality. Ind Eng Chem Res 2016;55:2049.

    Article  CAS  Google Scholar 

  46. Shambaugh RL, Krutty JD, Singleton SM. Melt blowing dies with louvers. Ind Eng Chem Res 2015;54:12999.

    Article  CAS  Google Scholar 

  47. Ruamsuk R, Takarada W, Kikutani T. Fine filament formation behavior of polymethylpentene and polypropylene near spinneret in melt blowing process. Int Polym Proc 2016;31:217.

    Article  CAS  Google Scholar 

  48. Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LHC. Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci 2009;113:2322.

    Article  CAS  Google Scholar 

  49. Han WL, Bhat GS, Wang XH. Investigation of nanofiber breakup in the melt-blowing process. Ind Eng Chem Res 2016;55:3150.

    Article  CAS  Google Scholar 

  50. Zhmayev E, Cho D, Joo YL. Nanofibers from gas-assisted polymer melt electrospinning. Polymer 2010;51:4140.

    Article  CAS  Google Scholar 

  51. Sinha-Ray S, Yarin AL, Pourdeyhimi B. The production of 100/400 nm inner/outer diameter carbon tubes by solution blowing and carbonization of core-shell nanofibers. Carbon 2010;48:3575.

    Article  CAS  Google Scholar 

  52. Ma XL, Zhang LY, Tan J, Qin YX, Chen HB, He WL, Yang WM, Li HY. Continuous manufacturing of nanofiber yarn with the assistance of suction wind and rotating collection via needleless melt electrospinning. J Appl Polym Sci 2017;134:7.

    Article  Google Scholar 

  53. Suzuki A, Arino K. Poly(ethylene terephthalate) nanosheets prepared by CO2-laser supersonic multi-drawing. Polymer 1830;2010:51.

    Google Scholar 

  54. Suzuki A, Arino K. Polypropylene nanofiber sheets prepared by CO2 laser supersonic multi-drawing. Eur Polymer J 2012;48:1169.

    Article  CAS  Google Scholar 

  55. Suzuki A, Shimizu R. Biodegradable poly(glycolic acid) nanofiber prepared by CO2 laser supersonic drawing. J Appl Polym Sci 2011;121:3078.

    Article  CAS  Google Scholar 

  56. Fukuhara K, Yamada T, Suzuki A. Characterization of fluoropolymer nanofiber sheets fabricated by CO2 laser drawing without solvents. Ind Eng Chem Res 2012;51:10117.

    Article  CAS  Google Scholar 

  57. Chen HB, Li HY, Ma XL, He WL, Tan J, Yang WM. Large scaled fabrication of microfibers by air-suction assisted needleless melt electrospinning. Fibers Polym 2016;17:576.

    Article  Google Scholar 

  58. Qin YX, Cheng LS, Zhang YP, Chen XQ, Wang X, He XT, Yang WM, An Y, Li HY. Efficient preparation of poly(lactic acid) nanofibers by melt differential electrospinning with addition of acetyl tributyl citrate. J Appl Polym Sci 2018;135:9.

    Article  Google Scholar 

  59. Zhang LF, Kopperstad P, West M, Hedin N, Fong H. Generation of polymer ultrafine fibers through solution (Air-) blowing. J Appl Polym Sci 2009;114:3479.

    Article  CAS  Google Scholar 

  60. Rezaei F, Gorbanev Y, Chys M, Nikiforov A, Van Hulle SWH, Cos P, Bogaerts A, De Geyter N. Investigation of plasma-induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Process Polym 2018;15:1700226.

    Article  Google Scholar 

  61. Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL, Neves NM. Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 2009;5:1195.

    CAS  Google Scholar 

  62. Fahmy TM, Samstein RM, Harness CC, Saltzman WM. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials 2005;26:5727.

    Article  CAS  Google Scholar 

  63. Choy KL. Chemical vapour deposition of coatings. Prog Mater Sci 2003;48:57.

    Article  CAS  Google Scholar 

  64. Chen MJ, Zhang YC, Li HY, Li XN, Ding YM, Bubakir MM, Yang WM. An example of industrialization of melt electrospinning: polymer melt differential electrospinning. Adv Ind Eng Polym Res 2019;2:110.

    Google Scholar 

  65. He JH, Liu Y. Control of bubble size and bubble number in bubble electrospinning. Comput Math Appl 2012;64:1033.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by National Key Research and Development Program (2016YFB0302000) China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyi Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Chen, M., Li, H. et al. The Critical Roles of the Gas Flow in Fabricating Polymer Nanofibers: A Mini-review. Adv. Fiber Mater. 4, 162–170 (2022). https://doi.org/10.1007/s42765-021-00114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00114-7

Keywords

Navigation