Skip to main content

Nanofiber Technology: History and Developments

  • Living reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Nanofibers are defined as fibers with diameters on the order of 100 nm. Nanofibers have been considered one of the top interesting studied materials for academicians and one of the greatest intriguing materials for modern industry. Nanofibers provide great opportunities for creating products with new properties via various physical and chemical modifications during or following the production process. Nanofibers bring promising solutions for fundamental problems in our life in various fields such as energy, environmental, and medical treatments. Researchers have turned to the development of a number of nanofiber fabrication techniques such as electrospinning, template-assisted synthesis, melt-blowing, bicomponent spinning, force-spinning and flash-spinning, chemical vapor deposition, and physical vapor deposition. However, the electrospinning is the widely used technique to produce continuous nonwoven nanofiber mats. In this chapter, a brief introduction to nanoscience and nanotechnology was discussed, and then the history and development of nanofiber technologies and production techniques are presented. In the following, types and classifications of nanofibers based on their origin and morphologies and their unique properties are explained, and finally, some current applications and their future perspectives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14(3):337–346

    Article  CAS  Google Scholar 

  2. Akbarian S, Sojoodi J, Monnavari F, Heidari H, Khosravian P, Javar HA, Assadi A, Rasouli R, Saffari M, Shandiz SAS (2017) Nano Conjugated PLGA-Chlorambucil: Synthesis In Vitro Anti Non-Hodgkin’s Lymphoma Cellular Assay. Lett Drug Des Discov 14(7):827–836

    Article  CAS  Google Scholar 

  3. Hashempour Alamdari N, Alaei-Beirami M, Shandiz S, Ataollah S, Hejazinia H, Rasouli R, Saffari M, Sadat Ebrahimi SE, Assadi A, Shafiee Ardestani M (2017) Contrast Media Mol Imaging 2017:1–19

    Google Scholar 

  4. Kebriaezadeh A, Ashrafi S, Rasouli R, Ebrahimi SES, Hamedani MP, Assadi A, Saffari M, Ardestani MS (2016) Gadobutrol-dendrimer effects on metastatic and apoptotic gene expression. Adv Nano Res 4(2):145–156

    Article  Google Scholar 

  5. Ebrahimi SH, Rasouli R, Alavi SE, Akbarzadeh A, Koohi MEM (2015) Investigation of effective factors in preparation of polybutyl cyanoacrylate nanoparticles by emulsion polymerization. New cellular & molecular biotechnology journal 5:33–38

    Google Scholar 

  6. Rasouli R, Hosseinian Z, Azarnoosh A, Mortazavi M, Akbarzadeh A (2015) Evaluation of magnetic nanoparticles loaded with cisplatin performance on breast cancer in in vivo and in vitro studies. New cellular & molecular biotechnology journal 5:29–36

    Google Scholar 

  7. Sharma AK, Keservani RK, Kesharwani RK (2018) Nanobiomaterials: applications in drug delivery. CRC Press 1–528

    Google Scholar 

  8. Asiyanbola B, Soboyejo W (2008) For the surgeon: an introduction to nanotechnology. J Surg Educ 65(2):155–161

    Article  Google Scholar 

  9. Sheetz T, Vidal J, Pearson TD, Lozano K (2005) Nanotechnology: Awareness and societal concerns. Technol Soc 27(3):329–345

    Article  Google Scholar 

  10. Boudaıffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287(5458):1658–1660

    Article  Google Scholar 

  11. Rosoff M (2001) Nano-surface chemistry. CRC Press

    Google Scholar 

  12. Standard A (2012) Standard Terminology Relating to Nanotechnology

    Google Scholar 

  13. Kumari N, Jha AK, Prasad K (2017) Fungal nanotechnology and biomedicine. In: Fungal nanotechnology. Springer, pp 207–233

    Google Scholar 

  14. Taniguchi N (1983) Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann Manuf Technol 32(2):573–582

    Article  Google Scholar 

  15. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36

    Google Scholar 

  16. Gilbert W, Wright E (1967) De magnete, magneticisque corporibus, et de magno magnete tellure: physiologia noua, plurimis & argumentis, & experimentis demonstrata. excudebat Short

    Google Scholar 

  17. Cooley JF (1902) Apparatus for electrically dispersing fluids. In: Google Patents

    Google Scholar 

  18. Tucker N, Stanger J, Staiger M, Razzaq H, Hofman K (2012) The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fibers Fabr 7:63–73

    CAS  Google Scholar 

  19. Bose G-M (1744) Die Electricität nach ihrer Entdeckung und Fortgang mit poetischer Feder entworffen. Joh. Joachim Ahlfelden, Wittenberg

    Google Scholar 

  20. Rayleigh L (1878) On the instability of jets. Proc Lond Math Soc 1(1):4–13

    Article  Google Scholar 

  21. Rayleigh L (1878) The influence of electricity on colliding water drops. Proc R Soc Lond 28:405–409

    Article  Google Scholar 

  22. Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc Lond 29:71–97

    Article  Google Scholar 

  23. Rayleigh L (1882) On the equilibrium of liquid conducting masses charged with electricity. Lond Edinb Dublin Philos Mag J Sci 14:87

    Google Scholar 

  24. Kauffman GB (1993) Rayon: the first semi-synthetic fiber product. J Chem Educ 70(11):887

    Article  CAS  Google Scholar 

  25. Martin RS, Colombi A (1992) Am J Nephrol 12(3):196–198

    Article  CAS  Google Scholar 

  26. Boys CV (1887) On the production, properties, and some suggested uses of the finest threads. Proc Phys Soc Lond 9(1):8

    Article  Google Scholar 

  27. Cloupeau M, Prunet-Foch B (1989) Electrostatic spraying of liquids in cone-jet mode. J Electrostat 22(2):135–159

    Article  CAS  Google Scholar 

  28. Morton WJ (1902) Method of dispersing fluids. In: Google Patents

    Google Scholar 

  29. Zeleny J (1907) The discharge of electricity from pointed conductors differing in size. Phys Rev Ser I 25(5):305

    Google Scholar 

  30. Burton E, Wiegand W (1912) Effect of electricity on streams of water drops, by EF Burton,… and WB Wiegand. University Library, Toronto

    Google Scholar 

  31. Zeleny J (1914) The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev 3(2):69

    Article  Google Scholar 

  32. Zeleny J (1915) On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points. Proc Camb Philos Soc 18:71

    Google Scholar 

  33. Zeleny J (1917) Instability of electrified liquid surfaces. Phys Rev 10(1):1

    Article  Google Scholar 

  34. Zeleny J (1920) Electrical discharges from pointed conductors. Phys Rev 16(2):102

    Article  Google Scholar 

  35. Macky W (1931) Some investigations on the deformation and breaking of water drops in strong electric fields. Proc R Soc Lond Ser A Contain Pap Math Phys Character 133(822):565–587

    Article  Google Scholar 

  36. Anton F (1934) Process and apparatus for preparing artificial threads. In: Google Patents

    Google Scholar 

  37. Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58(8):1486–1493

    Article  CAS  Google Scholar 

  38. Tucker N, Hofman K, Tazzaq H. A History of Electrospinning 1600–1995. GB-06385

    Google Scholar 

  39. English W (1948) Corona from a water drop. Phys Rev 74(2):179

    Article  Google Scholar 

  40. Guan B, Cole RB (2016) The background to electrospray. In: The encyclopedia of mass spectrometry. Elsevier, pp 132–140

    Chapter  Google Scholar 

  41. Mostofizadeh A, Li Y, Song B, Huang Y (2011) Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J Nanomater 2011:16

    Article  CAS  Google Scholar 

  42. Feynman RP (1959) There’s plenty of room at the bottom. Miniaturization. pp 282–296

    Google Scholar 

  43. Taylor G (1964) Disintegration of water drops in an electric field. Proc R Soc Lond A Math Phys Eng Sci 383–397. The Royal Society

    Article  Google Scholar 

  44. Taylor G (1966) The force exerted by an electric field on a long cylindrical conductor. Proc R Soc Lond A Math Phys Eng Sci 145–158. The Royal Society

    Article  Google Scholar 

  45. Taylor G (1969) Electrically driven jets. Proc R Soc Lond A Math Phys Eng Sci 453–475. The Royal Society

    Article  Google Scholar 

  46. Melcher J, Taylor G (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1(1):111–146

    Article  Google Scholar 

  47. Simons HL (1966) Process and apparatus for producing patterned non-woven fabrics. In: Google Patents

    Google Scholar 

  48. Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32(3):335–349

    Article  CAS  Google Scholar 

  49. Martin GE, Cockshott ID (1977) Fibrillar product of electrostatically spun organic material. In: Google Patents

    Google Scholar 

  50. Annis D, Bornat A, Edwards R, Higham A, Loveday B, Wilson J (1978) An elastomeric vascular prosthesis. ASAIO J 24(1):209–214

    CAS  Google Scholar 

  51. Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci B Polym Phys 19(6):909–920

    Article  CAS  Google Scholar 

  52. Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J Polym Sci B Polym Phys 19(6):921–932

    Article  CAS  Google Scholar 

  53. Larrondo L, St John Manley R (1981) Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. J Polym Sci B Polym Phys 19(6):933–940

    Article  CAS  Google Scholar 

  54. Tennent HG (1987) Carbon fibrils, method for producing same and compositions containing same. In: Google Patents

    Google Scholar 

  55. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    Article  CAS  Google Scholar 

  56. McEuen PL (2000) Single-wall carbon nanotubes. Phys World 13(6):31

    Article  CAS  Google Scholar 

  57. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35(2–3):151–160

    Article  CAS  Google Scholar 

  58. Wang Y, Serrano S, Santiago-Aviles JJ (2001) Electrostatic Synthesis and Characterization of Pb (Zr x Ti 1-x) O 3 Micro/nano-fibers. MRS Online Proc Libr Arch 702

    Google Scholar 

  59. Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core–shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932

    Article  CAS  Google Scholar 

  60. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  61. Smit E, Bűttner U, Sanderson RD (2005) Continuous yarns from electrospun fibers. Polymer 46(8):2419–2423

    Article  CAS  Google Scholar 

  62. Ramakrishna S, Fujihara K, Teo W, Lim T-C, Ma Z. An introduction to electrospinning and nanofibers. World Scientific Publishing Company, Singapura

    Google Scholar 

  63. Suzuki A, Aoki K (2008) Biodegradable poly (l-lactic acid) nanofiber prepared by a carbon dioxide laser supersonic drawing. Eur Polym J 44(8):2499–2505

    Article  CAS  Google Scholar 

  64. Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso LH (2009) Solution blow spinning: A new method to produce micro‐and nanofibers from polymer solutions. J Appl Polym Sci 113(4):2322–2330

    Article  CAS  Google Scholar 

  65. Badrossamay MR, McIlwee HA, Goss JA, Parker KK (2010) Nanofiber assembly by rotary jet-spinning. Nano Lett 10(6):2257–2261

    Article  CAS  Google Scholar 

  66. Weitz R, Harnau L, Rauschenbach S, Burghard M, Kern K (2008) Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett 8(4):1187–1191

    Article  CAS  Google Scholar 

  67. Bajakova J, Chaloupek J, Lukáš D, Lacarin M (2011) Drawing–the production of individual nanofibers by experimental method. In: Proceedings of the 3rd international conference on nanotechnology-smart materials (NANOCON’11), 2011

    Google Scholar 

  68. Tao SL, Desai TA (2007) Aligned arrays of biodegradable poly (ɛ-caprolactone) nanowires and nanofibers by template synthesis. Nano Lett 7(6):1463–1468

    Article  CAS  Google Scholar 

  69. Paramonov SE, Jun H-W, Hartgerink JD (2006) Self-assembly of peptide– amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128(22):7291–7298

    Article  CAS  Google Scholar 

  70. Ma H, Chen G, Zhang J, Liu Y, Nie J, Ma G (2017) Facile fabrication of core-shell polyelectrolyte complexes nanofibers based on electric field induced phase separation. Polymer 110:80–86

    Article  CAS  Google Scholar 

  71. Lin J, Xu L, Huang Y, Li J, Wang W, Feng C, Liu Z, Xu X, Zou J, Tang C (2016) Ultrafine porous boron nitride nanofibers synthesized via a freeze-drying and pyrolysis process and their adsorption properties. RSC Adv 6(2):1253–1259

    Article  CAS  Google Scholar 

  72. Jin Y, Jia M (2014) Preparation and electrochemical capacitive performance of polyaniline nanofiber-graphene oxide hybrids by oil–water interfacial polymerization. Synth Met 189:47–52

    Article  CAS  Google Scholar 

  73. Kim GH, Nam H, Choi W, An T, Lim G (2018) Electrospinning Nanofiber on an Insulating Surface with a Patterned Functional Electrolyte Electrode. Adv Mater Interfaces

    Google Scholar 

  74. Huang Y, Bu N, Duan Y, Pan Y, Liu H, Yin Z, Xiong Y (2013) Electrohydrodynamic direct-writing. Nanoscale 5(24):12007–12017

    Article  CAS  Google Scholar 

  75. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89

    Article  CAS  Google Scholar 

  76. Zhou Y, He J, Wang H, Qi K, Cui S (2017) Continuous nanofiber coated hybrid yarn produced by multi-nozzle air jet electrospinning. J Text Inst 108(5):783–787

    Article  CAS  Google Scholar 

  77. Wang P, Liu P, Kong H-Y, Zhang Y, He J-H (2017) Nonlinear vibration mechanism for fabrication of crimped nanofibers with bubble electrospinning and stuffer box crimping method. Text Res J 87(14):1706–1710

    Article  CAS  Google Scholar 

  78. Varabhas J, Chase GG, Reneker D (2008) Electrospun nanofibers from a porous hollow tube. Polymer 49(19):4226–4229

    Article  CAS  Google Scholar 

  79. Zhou X-h, Li L, Li Z-h, Fan L-l, Kang W-m, Cheng B-w (2017) The preparation of continuous CeO2/CuO/Al2O3 ultrafine fibers by electro-blowing spinning (EBS) and its photocatalytic activity. J Mater Sci Mater Electron 1–11

    Google Scholar 

  80. Zhmayev E, Cho D, Joo YL (2010) Nanofibers from gas-assisted polymer melt electrospinning. Polymer 51(18):4140–4144

    Article  CAS  Google Scholar 

  81. Jiang H, Hu Y, Li Y, Zhao P, Zhu K, Chen W (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108(2):237–243

    Article  CAS  Google Scholar 

  82. Wang X, Zhang K, Zhu M, Yu H, Zhou Z, Chen Y, Hsiao BS (2008) Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer 49(11):2755–2761

    Article  CAS  Google Scholar 

  83. El-Newehy MH, Al-Deyab SS, Kenawy E-R, Abdel-Megeed A (2012) Fabrication of electrospun antimicrobial nanofibers containing metronidazole using nanospider technology. Fibers Polym 13(6):709–717

    Article  CAS  Google Scholar 

  84. Sahay R, Thavasi V, Ramakrishna S (2011) Design modifications in electrospinning setup for advanced applications. J Nanomater 2011:17

    Article  Google Scholar 

  85. De Vrieze S, De Schoenmaker B, Ceylan Ö, Depuydt J, Van Landuyt L, Rahier H, Van Assche G, De Clerck K (2011) Morphologic study of steady state electrospun polyamide 6 nanofibres. J Appl Polym Sci 119(5):2984–2990

    Article  CAS  Google Scholar 

  86. Daelemans L, van der Heijden S, De Baere I, Rahier H, Van Paepegem W, De Clerck K (2016) Damage-resistant composites using electrospun nanofibers: a multiscale analysis of the toughening mechanisms. ACS Appl Mater Interfaces 8(18):11806–11818

    Article  CAS  Google Scholar 

  87. De Schoenmaker B, Goethals A, Van der Schueren L, Rahier H, De Clerck K (2012) Polyamide 6.9 nanofibres electrospun under steady state conditions from a solvent/non-solvent solution. J Mater Sci 47(9):4118–4126

    Article  CAS  Google Scholar 

  88. Steyaert I, Rahier H, De Clerck K (2015) Nanofibre-based sensors for visual and optical monitoring. In: Electrospinning for high performance sensors. Springer, pp 157–177

    Google Scholar 

  89. Steyaert I, Rahier H, Van Vlierberghe S, Olijve J, De Clerck K (2016) Gelatin nanofibers: Analysis of triple helix dissociation temperature and cold-water-solubility. Food Hydrocoll 57:200–208

    Article  CAS  Google Scholar 

  90. van der Heijden S, De Schoenmaker B, Rahier H, Van Assche G, De Clerck K (2014) The effect of the moisture content on the curing characteristics of an epoxy matrix in the presence of nanofibrous structures. Polym Test 40:265–272

    Article  CAS  Google Scholar 

  91. Steyaert I, Van der Schueren L, Rahier H, De Clerck K (2012) An alternative solvent system for blend electrospinning of polycaprolactone/chitosan nanofibres. Macromol Symp 321–322:71–75. Wiley Online Library

    Article  CAS  Google Scholar 

  92. Daniele MA, Boyd DA, Adams AA, Ligler FS (2015) Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Adv Healthc Mater 4(1):11–28

    Article  CAS  Google Scholar 

  93. Guarino V, Bonadies I, Ambrosio L (2018) Fabrication of nanofibers and nanotubes for tissue regeneration and repair. In: Peptides and proteins as biomaterials for tissue regeneration and repair. Elsevier, pp 205–228

    Chapter  Google Scholar 

  94. Karczewski A, Feitosa SA, Hamer EI, Pankajakshan D, Gregory RL, Spolnik KJ, Bottino MC (2018) Clindamycin-modified Triple Antibiotic Nanofibers: A Stain-free Antimicrobial Intracanal Drug Delivery System. J Endod 44(1):155–162

    Article  Google Scholar 

  95. Ozkizilcik A, Williams R, Tian ZR, Muresanu DF, Sharma A, Sharma HS (2018) Synthesis of biocompatible titanate nanofibers for effective delivery of neuroprotective agents. In: Neurotrophic factors. Springer, pp 433–442

    Google Scholar 

  96. Terra IA, Sanfelice RC, Valente GT, Correa DS (2018) Optical sensor based on fluorescent PMMA/PFO electrospun nanofibers for monitoring volatile organic compounds. J Appl Polym Sci

    Google Scholar 

  97. Jha RK, Wan M, Jacob C, Guha PK (2018) Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS 2 nanosheet composites. New J Chem

    Google Scholar 

  98. Liu L, Wang Z, Yang J, Liu G, Li J, Guo L, Chen S, Guo Q (2018) NiCo 2 O 4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sens Actuators B Chem 258:920–928

    Article  CAS  Google Scholar 

  99. Yuriar-Arredondo K, Armstrong MR, Shan B, Zeng W, Xu W, Jiang H, Mu B (2018) Nanofiber-based Matrimid organogel membranes for battery separator. J Membr Sci 546:158–164

    Article  CAS  Google Scholar 

  100. Kang W, Fan L, Deng N, Zhao H, Li Q, Naebe M, Yan J, Cheng B (2018) Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries. Chem Eng J 333:185–190

    Article  CAS  Google Scholar 

  101. Song X, Wang S, Chen G, Gao T, Bao Y, Ding L-X, Wang H (2018) Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries. Chem Eng J 333:564–571

    Article  CAS  Google Scholar 

  102. Kim MH, Lee WJ, Lee DH, Ko SW, Hwang TI, Kim JW, Park CH, Kim CS (2018) Development of Nanofiber Reinforced Double Layered Cabin Air Filter Using Novel Upward Mass Production Electrospinning Set Up. J Nanosci Nanotechnol 18(3):2132–2136

    Article  Google Scholar 

  103. Choi H-J, Kumita M, Hayashi S, Yuasa H, Kamiyama M, Seto T, Tsai C-J, Otani Y (2018) Filtration properties of nanofiber/microfiber mixed filter and prediction of its performance. Aerosol Air Qual Res 17(4):1052–1062

    Article  CAS  Google Scholar 

  104. Feng Q, Wu D, Zhao Y, Wei A, Wei Q, Fong H (2018) Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. J Hazard Mater 344:819–828

    Article  CAS  Google Scholar 

  105. Din IU, Shaharun MS, Naeem A, Tasleem S, Johan MR (2018) Carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Effect of copper concentration. Chem Eng J 334:619–629

    Article  CAS  Google Scholar 

  106. Gupta VK, Fakhri A, Agarwal S, Bharti AK, Naji M, Tkachev AG (2018) Preparation and characterization of TiO 2 nanofibers by hydrothermal method for removal of Benzodiazepines (Diazepam) from liquids as catalytic ozonation and adsorption processes. J Mol Liq 249:1033–1038

    Article  CAS  Google Scholar 

  107. Knizek R, Knizkova D, Bajzik V (2018) Baby Bed Sheets with a Nanofiber Membrane. World Academy of Science, Engineering and Technology, International Journal of Fashion and Textile Engineering 5(6)

    Google Scholar 

  108. Lee KS, Shim J, Park M, Kim HY, Son DI (2017) Transparent nanofiber textiles with intercalated ZnO@ graphene QD LEDs for wearable electronics. Compos Part B Eng 130:70–75

    Article  CAS  Google Scholar 

  109. Gorji M, Bagherzadeh R, Fashandi H (2017) Electrospun nanofibers in protective clothing. In: Electrospun nanofibers. Elsevier, pp 571–598

    Chapter  Google Scholar 

  110. Sinha MK, Das B, Kumar K, Kishore B, Prasad NE (2017) Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique. J Inst Eng (India) Ser E 1–8

    Google Scholar 

  111. Lu AX, McEntee M, Browe MA, Hall MG, DeCoste JB, Peterson GW (2017) MOFabric: Electrospun Nanofiber Mats from PVDF/UiO-66-NH2 for Chemical Protection and Decontamination. ACS Appl Mater Interfaces 9(15):13632–13636

    Article  CAS  Google Scholar 

  112. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29

    Article  CAS  Google Scholar 

  113. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803

    Article  CAS  Google Scholar 

  114. Pokropivny V, Skorokhod V (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27(5):990–993

    Article  CAS  Google Scholar 

  115. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  Google Scholar 

  116. Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945

    Article  CAS  Google Scholar 

  117. Cheng H-Y, Zhu Y-A, Sui Z-J, Zhou X-G, Chen D (2012) Modeling of fishbone-type carbon nanofibers with cone-helix structures. Carbon 50(12):4359–4372

    Article  CAS  Google Scholar 

  118. Hughes T, Chambers C (1889) US Patent 405, 480. Manufacture of carbon filaments

    Google Scholar 

  119. Li W, Li M, Adair KR, Sun X, Yu Y (2017) Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J Mater Chem A 5(27):13882–13906

    Article  CAS  Google Scholar 

  120. Lobo LS (2017) Nucleation and growth of carbon nanotubes and nanofibers: mechanism and catalytic geometry control. Carbon 114:411–417

    Article  CAS  Google Scholar 

  121. Lai C, Guo Q, Wu X-F, Reneker DH, Hou H (2008) Growth of carbon nanostructures on carbonized electrospun nanofibers with palladium nanoparticles. Nanotechnology 19(19):195303

    Article  CAS  Google Scholar 

  122. An G-H, Lee E-H, Ahn H-J (2016) Well-dispersed iron nanoparticles exposed within nitrogen-doped mesoporous carbon nanofibers by hydrogen-activation for oxygen-reduction reaction. J Alloys Compd 682:746–752

    Article  CAS  Google Scholar 

  123. Yu C, Saha S, Zhou J, Shi L, Cassell AM, Cruden BA, Ngo Q, Li J (2006) Thermal contact resistance and thermal conductivity of a carbon nanofiber. J Heat Transf 128(3):234–239

    Article  CAS  Google Scholar 

  124. Huang Y, Miao Y-E, Tjiu WW, Liu T (2015) High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co 3 O 4/MnO 2 hybrid electrodes. RSC Adv 5(24):18952–18959

    Article  CAS  Google Scholar 

  125. Cui Y, Liu C, Hu S, Yu X (2011) The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol Cells 95(4):1208–1212

    Article  CAS  Google Scholar 

  126. Nakane K, Ogata N (2010) Photocatalyst nanofibers obtained by calcination of organic-inorganic hybrids. In: Nanofibers. InTech

    Google Scholar 

  127. Moon J, Park J-A, Lee S-J, Zyung T, Kim I-D (2010) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens Actuators B Chem 149(1):301–305

    Article  CAS  Google Scholar 

  128. Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2004) Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15(12):1861

    Article  CAS  Google Scholar 

  129. Yamamoto K, Otsuka H, Takahara A, Wada S-I (2002) Preparation of a novel (polymer/inorganic nanofiber) composite through surface modification of natural aluminosilicate nanofiber. J Adhes 78(7):591–602

    Article  CAS  Google Scholar 

  130. Shi H, Yu Y, Zhang Y, Feng X, Zhao X, Tan H, Khan SU, Li Y, Wang E (2018) Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light. Appl Catal B Environ 221:280–289

    Article  CAS  Google Scholar 

  131. Ding B, Kim CK, Kim HY, Seo MK, Park S (2004) Titanium dioxide nanofibers prepared by using electrospinning method. J Fibers Polym 5(2):105–109

    Article  CAS  Google Scholar 

  132. Wang ZL, Gao RP, Gole JL, Stout JD (2000) Silica nanotubes and nanofiber arrays. Adv Mater 12(24):1938–1940

    Article  CAS  Google Scholar 

  133. Viswanathamurthi P, Bhattarai N, Kim HY, Lee DR (2003) The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning. Nanotechnology 15(3):320

    Article  CAS  Google Scholar 

  134. Kim C, Noh M, Choi M, Cho J, Park B (2005) Critical size of a nano SnO2 electrode for Li-secondary battery. Chem Mater 17(12):3297–3301

    Article  CAS  Google Scholar 

  135. Zhu HY, Riches JD, Barry JC (2002) γ-alumina nanofibers prepared from aluminum hydrate with poly (ethylene oxide) surfactant. Chem Mater 14(5):2086–2093

    Article  CAS  Google Scholar 

  136. Mondal K, Sharma A (2016) Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing. RSC Adv 6(97):94595–94616

    Article  CAS  Google Scholar 

  137. Shi X, Zhou W, Ma D, Ma Q, Bridges D, Ma Y, Hu A (2015) Electrospinning of nanofibers and their applications for energy devices. J Nanomater 16(1):122

    Google Scholar 

  138. Vahtrus M, Šutka A, Vlassov S, Šutka A, Polyakov B, Saar R, Dorogin L, Lõhmus R (2015) Mechanical characterization of TiO 2 nanofibers produced by different electrospinning techniques. Mater Charact 100:98–103

    Article  CAS  Google Scholar 

  139. Shendokar S, Kelkar A, Mohan R, Bolick R, Chandekar G (2008) Effect of sintering temperature on mechanical properties of electrospun silica nanofibers. ASME, IMECE 2008

    Google Scholar 

  140. Chen J, Liao X, Wang M, Liu Z, Zhang J, Ding L, Gao L, Li Y (2015) Highly flexible, nonflammable and free-standing SiC nanowire paper. Nanoscale 7(14):6374–6379

    Article  CAS  Google Scholar 

  141. Biswas A, Park H, Sigmund WM (2012) Flexible ceramic nanofibermat electrospun from TiO 2–SiO 2 aqueous sol. Ceram Int 38(1):883–886

    Article  CAS  Google Scholar 

  142. Si Y, Yu J, Tang X, Ge J, Ding B (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:5802

    Article  CAS  Google Scholar 

  143. Li D, Xia Y (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3(4):555–560

    Article  CAS  Google Scholar 

  144. Wang H, Zhang X, Wang N, Li Y, Feng X, Huang Y, Zhao C, Liu Z, Fang M, Ou G (2017) Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Sci Adv 3(6):e1603170

    Article  CAS  Google Scholar 

  145. Koombhongse S, Liu W, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci B Polym Phys 39(21):2598–2606

    Article  CAS  Google Scholar 

  146. Zander NE (2013) Hierarchically structured electrospun fibers. Polymers 5(1):19–44

    Article  CAS  Google Scholar 

  147. Choe K, Kim KJ, Kim D, Manford C, Heo S, Shahinpoor M (2006) Performance Characteristics of Electro–chemically Driven Polyacrylonitrile Fiber Bundle Actuators. J Intell Mater Syst Struct 17(7):563–576

    Article  CAS  Google Scholar 

  148. Chuysinuan P, Techasakul S, Suksamrarn S, Wetprasit N, Hongmanee P, Supaphol P (2017) Preparation and characterization of electrospun polyacrylonitrile fiber mats containing Garcinia mangostana. Polym Bull 1–17

    Google Scholar 

  149. Zhao R, Li X, Sun B, Ji H, Wang C (2017) Diethylenetriamine-assisted synthesis of amino-rich hydrothermal carbon-coated electrospun polyacrylonitrile fiber adsorbents for the removal of Cr (VI) and 2, 4-dichlorophenoxyacetic acid. J Colloid Interface Sci 487:297–309

    Article  CAS  Google Scholar 

  150. Zhao R, Li X, Sun B, Li Y, Li Y, Yang R, Wang C (2017) Branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane: a novel and effective adsorbent for Cr (VI) remediation in wastewater. J Mater Chem A 5(3):1133–1144

    Article  CAS  Google Scholar 

  151. Afshari M (2016) Electrospun nanofibers. Woodhead Publishing

    Google Scholar 

  152. Jiang T, Carbone EJ, Lo KW-H, Laurencin CT (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46:1–24

    Article  CAS  Google Scholar 

  153. Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22(26):12953–12971

    Article  CAS  Google Scholar 

  154. Lee C, Jo SM, Choi J, Baek K-Y, Truong YB, Kyratzis IL, Shul Y-G (2013) SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J Mater Sci 48(10):3665–3671

    Article  CAS  Google Scholar 

  155. Guo L, Bai J, Li C, Meng Q, Liang H, Sun W, Li H, Liu H (2013) A novel catalyst containing palladium nanoparticles supported on PVP composite nanofiber films: Synthesis, characterization and efficient catalysis. Appl Surf Sci 283:107–114

    Article  CAS  Google Scholar 

  156. Ji L, Zhang X (2010) Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries. Energy Environ Sci 3(1):124–129

    Article  CAS  Google Scholar 

  157. Jeong I, Lee J, Joseph KV, Lee HI, Kim JK, Yoon S, Lee J (2014) Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell. Nano Energy 9:392–400

    Article  CAS  Google Scholar 

  158. Li Y, Gong J, He G, Deng Y (2011) Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application. Mater Chem Phys 129(1):477–482

    Article  CAS  Google Scholar 

  159. Mahmoudifard M, Shoushtari AM, Mohsenifar A (2011) Novel approach toward optical sensors based on electrospun nanofibers â quantum dot composits. DE REDACfiIE

    Google Scholar 

  160. Mohamad FS, Mat Zaid MH, Abdullah J, Zawawi RM, Lim HN, Sulaiman Y, Abdul Rahman N (2017) Synthesis and Characterization of Polyaniline/Graphene Composite Nanofiber and Its Application as an Electrochemical DNA Biosensor for the Detection of Mycobacterium tuberculosis. Sensors 17(12):2789

    Article  CAS  Google Scholar 

  161. Lei X, Rui W, Qi X, Dan Z, Yong L (2011) Micro humidity sensor with high sensitivity and quick response/recovery based on ZnO/TiO2 composite nanofibers. Chin Phys Lett 28(7):070702

    Article  CAS  Google Scholar 

  162. Haider A, Gupta KC, Kang I-K (2014) Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds. Biomed Res Int 2014

    Google Scholar 

  163. Cui Z, Zheng Z, Lin L, Si J, Wang Q, Peng X, Chen W (2017) Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv Polym Technol

    Google Scholar 

  164. Rijal NP, Adhikari U, Khanal S, Pai D, Sankar J, Bhattarai N (2018) Magnesium oxide-poly (ɛ-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications. Mater Sci Eng B 228:18–27

    Article  CAS  Google Scholar 

  165. Kwon G-W, Gupta KC, Jung K-H, Kang I-K (2017) Lamination of microfibrous PLGA fabric by electrospinning a layer of collagen-hydroxyapatite composite nanofibers for bone tissue engineering. Biomater Res 21(1):11

    Article  CAS  Google Scholar 

  166. Pant HR, Kim HJ, Joshi MK, Pant B, Park CH, Kim JI, Hui K, Kim CS (2014) One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification. J Hazard Mater 264:25–33

    Article  CAS  Google Scholar 

  167. Homaeigohar S, Elbahri M (2014) Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials 7(2):1017–1045

    Article  CAS  Google Scholar 

  168. Low K, Chartuprayoon N, Echeverria C, Li C, Bosze W, Myung NV, Nam J (2014) Polyaniline/poly (ɛ-caprolactone) composite electrospun nanofiber-based gas sensors: optimization of sensing properties by dopants and doping concentration. Nanotechnology 25(11):115501

    Article  CAS  Google Scholar 

  169. Sawicka KM, Gouma P (2006) Electrospun composite nanofibers for functional applications. J Nanopart Res 8(6):769–781

    Article  CAS  Google Scholar 

  170. Wang N, Chen H, Lin L, Zhao Y, Cao X, Song Y, Jiang L (2010) Multicomponent phase change microfibers prepared by temperature control multifluidic electrospinning. Macromol Rapid Commun 31(18):1622–1627

    Article  CAS  Google Scholar 

  171. Wang Y, Qiao W, Wang B, Zhang Y, Shao P, Yin T (2011) Electrospun composite nanofibers containing nanoparticles for the programmable release of dual drugs. Polym J 43(5):478–483

    Article  CAS  Google Scholar 

  172. Pai C-L, Boyce MC, Rutledge GC (2009) Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Macromolecules 42(6):2102–2114

    Article  CAS  Google Scholar 

  173. Wang X, Ding B, Yu J, Wang M (2011) Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 6(5):510–530

    Article  CAS  Google Scholar 

  174. Gordon JE (1991) The new science of strong materials: or why you don’t fall through the floor. Penguin, London

    Google Scholar 

  175. Dresselhaus MS, Dresselhaus G, Eklund P, Rao A (2000) Carbon nanotubes. In: The physics of fullerene-based and fullerene-related materials. Springer, pp 331–379

    Google Scholar 

  176. Kulpreechanan N, Bunaprasert T, Damrongsakkul S, Kanokpanont S, Rangkupan R (2013) Effect of polycaprolactone electrospun fiber size on L929 cell behavior. Adv Mater Res 701:420–424. Trans Tech Publications

    Article  CAS  Google Scholar 

  177. McManus MC, Boland ED, Koo HP, Barnes CP, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL (2006) Mechanical properties of electrospun fibrinogen structures. Acta Biomater 2(1):19–28

    Article  Google Scholar 

  178. Mauck RL, Baker BM, Nerurkar NL, Burdick JA, Li W-J, Tuan RS, Elliott DM (2009) Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng Part B Rev 15(2):171–193

    Article  CAS  Google Scholar 

  179. Eichhorn S, Sampson W (2010) Relationships between specific surface area and pore size in electrospun polymer fibre networks. J R Soc Interface 7(45):641–649

    Article  CAS  Google Scholar 

  180. Norris ID, Shaker MM, Ko FK, MacDiarmid AG (2000) Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth Met 114(2):109–114

    Article  CAS  Google Scholar 

  181. Yousefzadeh M, Latifi M, Amani-Tehran M, Teo W-E, Ramakrishna S (2012) A Note on the 3D Structural Design of Electrospun Nanofibers. J Eng Fabr Fibers 7(2)

    Google Scholar 

  182. Yousefzadeh M, Latifi M, Teo WE, Amani-Tehran M, Ramakrishna S (2011) Producing continuous twisted yarn from well-aligned nanofibers by water vortex. Polym Eng Sci 51(2):323–329

    Article  CAS  Google Scholar 

  183. Pierini F, Lanzi M, Nakielski P, Pawłowska S, Urbanek O, Zembrzycki K, Kowalewski TA (2017) Single-material organic solar cells based on electrospun fullerene-grafted polythiophene nanofibers. Macromolecules 50(13):4972–4981

    Article  CAS  Google Scholar 

  184. Skupov KM, Ponomarev II, Razorenov DY, Zhigalina VG, Zhigalina OM, Ponomarev II, Volkova YA, Volfkovich YM, Sosenkin VE (2017) Carbon nanofiber paper electrodes based on heterocyclic polymers for high temperature polymer electrolyte membrane fuel cell. Macromol Symp. Wiley Online Library

    Article  CAS  Google Scholar 

  185. Sebastián D, Calderón J, González-Expósito J, Pastor E, Martínez-Huerta M, Suelves I, Moliner R, Lázaro M (2010) Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells. Int J Hydrogen Energy 35(18):9934–9942

    Article  CAS  Google Scholar 

  186. Lai F, Huang Y, Zuo L, Gu H, Miao Y-E, Liu T (2016) Electrospun nanofiber-supported carbon aerogel as a versatile platform toward asymmetric supercapacitors. J Mater Chem A 4(41):15861–15869

    Article  CAS  Google Scholar 

  187. Yu T, Lin B, Li Q, Wang X, Qu W, Zhang S, Deng C (2016) First exploration of freestanding and flexible Na 2+ 2x Fe 2− x (SO 4) 3@ porous carbon nanofiber hybrid films with superior sodium intercalation for sodium ion batteries. Phys Chem Chem Phys 18(38):26933–26941

    Article  CAS  Google Scholar 

  188. Iqbal N, Wang X, Babar AA, Zainab G, Yu J, Ding B (2017) Flexible Fe 3 O 4@ Carbon Nanofibers Hierarchically Assembled with MnO 2 Particles for High-Performance Supercapacitor Electrodes. Sci Rep 7(1):15153

    Article  CAS  Google Scholar 

  189. Kumar PS, Sundaramurthy J, Sundarrajan S, Babu VJ, Singh G, Allakhverdiev SI, Ramakrishna S (2014) Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ Sci 7(10):3192–3222

    Article  CAS  Google Scholar 

  190. Li B, Zhang F, Guan S, Zheng J, Xu C (2016) Wearable piezoelectric device assembled by one-step continuous electrospinning. J Mater Chem C 4(29):6988–6995

    Article  CAS  Google Scholar 

  191. Lupan O, Guérin V, Ghimpu L, Tiginyanu I, Pauporté T (2012) Nanofibrous-like ZnO layers deposited by magnetron sputtering and their integration in dye-sensitized solar cells. Chem Phys Lett 550:125–129

    Article  CAS  Google Scholar 

  192. Jung H-Y, Roh S-H (2017) Carbon Nanofiber/Polypyrrole Nanocomposite as Anode Material in Microbial Fuel Cells. J Nanosci Nanotechnol 17(8):5830–5833

    Article  CAS  Google Scholar 

  193. Liu J, Yuan H, Qiao J, Feng J, Xu C, Wang Z, Sun W, Sun K (2017) Hierarchical hollow nanofiber networks for high-performance hybrid direct carbon fuel cells. J Mater Chem A 5(33):17216–17220

    Article  CAS  Google Scholar 

  194. Persano L, Camposeo A, Pisignano D (2015) Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Prog Polym Sci 43:48–95

    Article  CAS  Google Scholar 

  195. Sood R, Cavaliere S, Jones DJ, Rozière J (2016) Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy 26:729–745

    Article  CAS  Google Scholar 

  196. Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18(44):5326–5334

    Article  CAS  Google Scholar 

  197. Gao H, Yang Y, Akampumuza O, Hou J, Zhang H, Qin X (2017) A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM 2.5 capture. Environ Sci Nano 4(4):864–875

    Article  CAS  Google Scholar 

  198. Tang M, Hu J, Liang Y, Pui DY (2017) Pressure drop, penetration and quality factor of filter paper containing nanofibers. Text Res J 87(4):498–508

    Article  CAS  Google Scholar 

  199. Sundarrajan S, Tan KL, Lim SH, Ramakrishna S (2014) Electrospun nanofibers for air filtration applications. Procedia Eng 75:159–163

    Article  CAS  Google Scholar 

  200. Liu C, Hsu P-C, Lee H-W, Ye M, Zheng G, Liu N, Li W, Cui Y (2015) Transparent air filter for high-efficiency PM 2.5 capture. Nat Commun 6:6205

    Article  CAS  Google Scholar 

  201. Li J-J, Zhou Y-N, Luo Z-H (2015) Smart fiber membrane for pH-induced oil/water separation. ACS Appl Mater Interfaces 7(35):19643–19650

    Article  CAS  Google Scholar 

  202. Park J-A, Kim S-B (2017) Antimicrobial filtration with electrospun poly (vinyl alcohol) nanofibers containing benzyl triethylammonium chloride: Immersion, leaching, toxicity, and filtration tests. Chemosphere 167:469–477

    Article  CAS  Google Scholar 

  203. Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 98(1):47–56

    Article  CAS  Google Scholar 

  204. Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A (2005) Poly (vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 6(3):1484–1488

    Article  CAS  Google Scholar 

  205. Neuberg P, Hamaidi I, Danilin S, Ripoll M, Lindner V, Nothisen M, Wagner A, Kichler A, Massfelder T, Remy J-S (2018) Polydiacetylenic Nanofibers as new siRNA vehicles for in vitro and in vivo delivery. Nanoscale

    Google Scholar 

  206. Zhou F, Wen M, Zhou P, Zhao Y, Jia X, Fan Y, Yuan X (2018) Electrospun membranes of PELCL/PCL-REDV loading with miRNA-126 for enhancement of vascular endothelial cell adhesion and proliferation. Mater Sci Eng C 85:37–46

    Article  CAS  Google Scholar 

  207. Wang Z, Shen H, Song S, Zhang L, Chen W, Dai J, Zhang Z (2018) Graphene Oxide Incorporated PLGA Nanofibrous Scaffold for Solid Phase Gene Delivery into Mesenchymal Stem Cells. J Nanosci Nanotechnol 18(4):2286–2293

    Article  Google Scholar 

  208. Xu W, Yang W, Yang Y (2009) Electrospun starch acetate nanofibers: Development, properties, and potential application in drug delivery. Biotechnol Prog 25(6):1788–1795

    CAS  Google Scholar 

  209. Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61(12):1033–1042

    Article  CAS  Google Scholar 

  210. Chen DW, Hsu Y-H, Liao J-Y, Liu S-J, Chen J-K, Ueng SW-N (2012) Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. Int J Pharm 430(1):335–341

    Article  CAS  Google Scholar 

  211. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412

    Article  CAS  Google Scholar 

  212. Zhang Y, Lim CT, Ramakrishna S, Huang Z-M (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 16(10):933–946

    Article  CAS  Google Scholar 

  213. Kamble P, Sadarani B, Majumdar A, Bhullar S (2017) Nanofiber based drug delivery systems for skin: A promising therapeutic approach. J Drug Deliv Sci Technol 41:124–133

    Article  CAS  Google Scholar 

  214. He C, Nie W, Feng W (2014) Engineering of biomimetic nanofibrous matrices for drug delivery and tissue engineering. J Mater Chem B 2(45):7828–7848

    Article  CAS  Google Scholar 

  215. Sebe I, Szabó P, Kállai-Szabó B, Zelkó R (2015) Incorporating small molecules or biologics into nanofibers for optimized drug release: A review. Int J Pharm 494(1):516–530

    Article  CAS  Google Scholar 

  216. Cui W, Zhou Y, Chang J (2010) Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater 11(1):014108

    Article  CAS  Google Scholar 

  217. Pereira H, Frias AM, Oliveira JM, Espregueira-Mendes J, Reis RL (2011) Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy 27(12):1706–1719

    Article  Google Scholar 

  218. Santoro M, Shah SR, Walker JL, Mikos AG (2016) Poly (lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 107:206–212

    Article  CAS  Google Scholar 

  219. Choi JS, Leong KW, Yoo HS (2008) In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 29(5):587–596

    Article  CAS  Google Scholar 

  220. Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241

    Article  CAS  Google Scholar 

  221. Zhang Z, Hu J, Ma PX (2012) Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev 64(12):1129–1141

    Article  CAS  Google Scholar 

  222. Cai YZ, Zhang GR, Wang LL, Jiang YZ, Ouyang HW, Zou XH (2012) J Biomed Mater Res A 100(5):1187–1194

    Article  CAS  Google Scholar 

  223. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703

    Article  CAS  Google Scholar 

  224. Vargas ET, do Vale Baracho N, De Brito J, De Queiroz A (2010) Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater 6(3):1069–1078

    Article  CAS  Google Scholar 

  225. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67(2):675–679

    Article  CAS  Google Scholar 

  226. Fan L, Wang H, Zhang K, Cai Z, He C, Sheng X, Mo X (2012) Vitamin C-reinforcing silk fibroin nanofibrous matrices for skin care application. RSC Adv 2(10):4110–4119

    Article  CAS  Google Scholar 

  227. Choi JS, Choi SH, Yoo HS (2011) Coaxial electrospun nanofibers for treatment of diabetic ulcers with binary release of multiple growth factors. J Mater Chem 21(14):5258–5267

    Article  CAS  Google Scholar 

  228. Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanofibers for wound healing. Nanomedicine

    Article  CAS  Google Scholar 

  229. Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P (2010) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21(2):77–95

    CAS  Google Scholar 

  230. Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Hudson SM (2010) Chitosan-coated poly (vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B Appl Biomater 92(2):568–576

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Barhoum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barhoum, A., Rasouli, R., Yousefzadeh, M., Rahier, H., Bechelany, M. (2018). Nanofiber Technology: History and Developments. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42789-8_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42789-8

  • Online ISBN: 978-3-319-42789-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics