Skip to main content
Log in

Diameter Refinement of Electrospun Nanofibers: From Mechanism, Strategies to Applications

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Electrospinning has drawn wide attention for its powerful capacity to produce ultrafine nanofibers (UNFs) from various materials. These UNFs demonstrated significantly enhanced performance, such as ultra-high surface area, more porosity and stronger mechanical properties. Here, we comprehensively review their basic principles, state-of-the-art methods and preponderant applications. We begin with a brief introduction to the refinement theory of polymer jets, followed by discussion of factors affecting fiber refinement. We then discuss the refining strategies from the aspects of solution properties, spinning parameters, auxiliary force and post-treatment. Afterward, we highlight the most relevant and recent applications associated with the remarkable features of UNFs, including filtration materials, supercapacitors, biomedical materials and other applications. At the end, we offer perspectives on the challenges, opportunities, and new directions for future development of electrospun UNFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2016, Elsevier. b A diagram of the linear jet is ejected from the tip of the Taylor cone. c Schematic illustration of the stable-jet length in electrospinning process. d The evolution of jet loses of stability and moves into whipping stage. b and d Reproduced with permission [83]. Copyright 2008, Elsevier. c Reproduced with permission [28]. Copyright 2019, Elsevier

Fig. 3

Copyright 2012, Elsevier. b Preparation of PI and PI-UV ultrafine nanofiber membrane (UFMs) and diameter distribution of the PI and PI-UV UFMs. Reproduced with permission [40]. Copyright 2020, John Wiley and Sans. c Concept for DVT method, showing hypothetical curves of viscosity and the shear stress during electrospinning. Reproduced with permission [37]. Copyright 2019, Springer Nature

Fig. 4

Copyright 2009, John Wiley and Sans. Electric field distributions of line three-needle systems: e without auxiliary plate and f with auxiliary plate. g Comparison of the electric field strength distribution in the y–z plane along y = 25 mm. Reproduced with permission [48]. Copyright 2012, American Chemical Society

Fig. 5

Copyright 2018, Springer Nature. b Schematic of supersonic air-assisted electrospinning setup. c Two-stage stretching of the polymer jet and crystal sheet alignment. In the inset are SEM image and size distribution of PA 6 nanofibers. Reproduced with permission [57]. Copyright 2013, Royal Society of Chemistry. d Schematic of CES setup. Reproduced with permission [60]. Copyright 2020, American Chemical Society. e Schematic diagram and high-speed charge-coupled device camera images of the differences of jet radius and velocity under the driven of CES. Reproduced with permission [68]. Copyright 2014, Elsevier

Fig. 6

Copyright 2013, Elsevier. b Schematic of hot-stretching process. Reproduced with permission [69]. Copyright 2020, John Wiley and Sans

Fig. 7

Copyright 2019, Springer Nature. d Illustration of three-step break mechanism. Reproduced with permission [51]. Copyright 2017, Springer Nature

Fig. 8

Copyright 2020, Elsevier. e Typical SEM images of the nano-nets formed from PVDF solutions. f The fiber diameter distribution. g The NaCl PM0.3, PM1 and PM2.5 removal efficiencies and pressure drop. h The removal efficiencies at different transmittance values. il) Snapshot images of PVDF nano-nets at different transparencies. Reproduced with permission [21]. Copyright 2019, Springer Nature

Fig. 9

Copyright 2019, Elsevier. c SEM of carbon N-nets. d Flexibility demonstrations of carbon N-net membrane. CV curves (e) and Nyquist plots (f) of the carbon N-nets. g Cycling performance of carbon N-nets in supercapacitors at a current density of 2 A g1 (top) and after fatigue test with a bending angle of 180° (bottom). Reproduced with permission [24]. Copyright 2020, Springer Nature

Fig. 10

Copyright 2009, Elsevier. b Impact of type I collagen (Coll I) fibril diameter and pore size on cell morphology and cluster formation. Images show nuclei (blue), Coll I fibrils (white) and actin filaments (green). Reproduced with permission [106]. Copyright 2015, Elsevier

Fig. 11

Copyright 2019, Elsevier. SEM images of PVA/PEDOT: PSS fabricated under (e) traditional electrospinning (20 kV), (f) high pressure airflow assisted electrospinning (70 kV), the fiber diameter distribution on the right. (g and h). The reversible response curves of current–time (It) to NH3 concentration of 50 ppm, correspondingly. Reproduced with permission [18]. Copyright 2015, Multidisciplinary Digital Publishing Institute

Similar content being viewed by others

References

  1. Xue JJ, Xie JW, Liu WY, Xia YN. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 2017;50:1976.

    Article  CAS  Google Scholar 

  2. Konno M, Kishi Y, Tanaka M, Kawakami H. Core/shell-like structured ultrafine branched nanofibers created by electrospinning. Polym J 2014;46:792.

    Article  CAS  Google Scholar 

  3. Zhuang XP, Jia KF, Cheng BW, Guan KT, Kang WM, Ren YL. Preparation of polyacrylonitrile nanofibers by solution blowing process. J Eng Fibers Fabr 2013;8:88.

    CAS  Google Scholar 

  4. Chaudhuri S, Wu CM, Chiu YC, Kuo DH. Highly sensitive electrospun poly (HEMA-co-NMA)/BPDO nanofiber membranes for sensing metal ions in aqueous media. Express Polym Lett 2021;15:515.

    Article  CAS  Google Scholar 

  5. Xue B, Zhang FF, Zheng JM, Xu CY. Flexible piezoelectric device directly assembled through the continuous electrospinning method. Smart Mater Struct 2021;30:045006.

    Article  CAS  Google Scholar 

  6. Zhou NJ, Jiang BF, He X, Li YS, Ma ZJ, Zhang H, Zhang MJ. A superstretchable and ultrastable liquid metal-elastomer wire for soft electronic devices. ACS Appl Mater Inter 2021;13:19254.

    Article  CAS  Google Scholar 

  7. Wang ZJ, Li ZY, Jiang TT, Xu XR, Wang C. Ultrasensitive hydrogen sensor based on Pd-0-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl Mater Inter 2013;5:20131.

    Google Scholar 

  8. Zhao GR, Gong SB, Wang HG, Ren JF, Wang N, Yang YW, Gao G, Chen SS, Li LL. Ultrathin biocompatible electrospun fiber films for self-powered human motion sensor. Int J Pr Eng Man-GT 2021;8:855.

    Google Scholar 

  9. Koo WT, Choi SJ, Kim SJ, Jang JS, Tuller HL, Kim ID. Heterogeneous sensitization of metal-organic framework driven Metal@Metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J Am Chem Soc 2016;138:13431.

    Article  CAS  Google Scholar 

  10. Lou YY, Ding SS, Wang B, Wang J, Sun Q, Jin X, Li XY. Controllable morphology of electrospun nanofiber membranes with tunable groove structure and the enhanced filtration performance for ultrafine particulates. Nanotechnology 2021;32:315708.

    Article  CAS  Google Scholar 

  11. Jiang JX, Shao ZG, Wang X, Zhu P, Deng SQ, Li WW, Zheng GF. Three-dimensional composite electrospun nanofibrous membrane by multi-jet electrospinning with sheath gas for high-efficiency antibiosis air filtration. Nanotechnology 2021;32:245707.

    Article  CAS  Google Scholar 

  12. Li CL, Wu MC, Liu R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co–N–C nanofibers with embedding FeCo alloy nanoparticles. Appl Catal B 2019;244:150.

    Article  CAS  Google Scholar 

  13. Zhang M, Wu XW, Yang DZ, Qin LY, Zhang SY, Xu T, Zhao TY, Yu ZZ. Ultraflexible reedlike carbon nanofiber membranes decorated with Ni–Co–S nanosheets and Fe2O3–C core-shell nanoneedle arrays as electrodes of flexible quasi-solid-state asymmetric supercapacitors. ACS Appl Energy Mater 2021;4:1505.

    Article  CAS  Google Scholar 

  14. Cheng YL, Huang L, Xiao X, Yao B, Yuan LY, Li TQ, Hu ZM, Wang B, Wan J, Zhou J. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 2015;15:66.

    Article  CAS  Google Scholar 

  15. Zhang C, Wang XR, Liu AH, Pan CJ, Ding HY, Ye W. Reduced graphene oxide/titanium dioxide hybrid nanofiller-reinforced electrospun silk fibroin scaffolds for tissue engineering. Mater Lett 2021;291:129563.

    Article  CAS  Google Scholar 

  16. Davani F, Alishahi M, Sabzi M, Khorram M, Arastehfar A, Zomorodian K. Dual drug delivery of vancomycin and imipenem/cilastatin by coaxial nanofibers for treatment of diabetic foot ulcer infections. Mater Sci Eng C 2021;123:111975.

    Article  CAS  Google Scholar 

  17. Feng K, Li SF, Wei YS, Zong MH, Hu TG, Wu H, Han SY. Fabrication of nanostructured multi-unit vehicle for intestinal-specific delivery and controlled release of peptide. Nanotechnology 2021;32:245101.

    Article  CAS  Google Scholar 

  18. Zang QQ, Wang XX, Fu J, Liu RQ, He HW, Ma JW, Yu M, Ramakrishna S, Long YZ. Electrospinning of ultrafine conducting polymer composite nanofibers with diameter less than 70 nm as high sensitive gas sensor. Materials 2018;11:1744.

    Article  Google Scholar 

  19. He JH, Wan YQ, Xu L. Nano-effects, quantum-like properties in electrospun nanofibers. Chaos Soliton Fract 2007;33:26–37.

    Article  CAS  Google Scholar 

  20. Chang WM, Wang CC, Chen CY. Fabrication of ultra-thin carbon nanofibers by centrifuged-electrospinning for application in high-rate supercapacitors. Electrochim Acta 2019;296:268–75.

    Article  CAS  Google Scholar 

  21. Zhang SC, Liu H, Tang N, Ge JL, Yu JY, Ding B. Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks. Nat Commun 2019;10:1458.

    Article  CAS  Google Scholar 

  22. Zhang SC, Liu H, Yin X, Li ZL, Yu JY, Ding B. Tailoring mechanically robust poly(m-phenylene isophthalamide) nanofiber/nets for ultrathin high-efficiency air filter. Sci Rep 2017;7:40550.

    Article  CAS  Google Scholar 

  23. Yin X, Zhang ZJ, Ma HY, Venkateswaran S, Hsiao BS. Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: filtration and adsorption. Sep Purif Technol 2020;242:116794.

    Article  CAS  Google Scholar 

  24. Zhang SC, Liu H, Yu JY, Li BY, Ding B. Multi-functional flexible 2D carbon nanostructured networks. Nat Commun 2020;11:5134.

    Article  CAS  Google Scholar 

  25. Deng JF, Liu C, Madou M. Ultra-thin carbon nanofibers based on graphitization of near-field electrospun polyacrylonitrile. Nanoscale 2020;12:10521.

    Article  CAS  Google Scholar 

  26. Yu DG, Shen XX, Branford-White C, White K, Zhu LM, Bligh SWA. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology 2009;20:055104.

    Article  Google Scholar 

  27. Prieto E, Mojares EB, Cortez JJ, Vasquez MRJ. Electrospun nanofiber scaffolds for the propagation and analysis of breast cancer stem cells in vitro. Biomed Mater 2021;16:035004.

    Article  CAS  Google Scholar 

  28. Lei SL, Quan ZZ, Zhang HN, Qin XH, Wang RW, Yu JY. Stable-jet length controlling electrospun fiber radius: model and experiment. Polymer 2019;180:121762.

    Article  Google Scholar 

  29. Liu SQ, Reneker DH. Droplet-jet shape parameters predict electrospun polymer nanofiber diameter. Polymer 2019;168:155.

    Article  CAS  Google Scholar 

  30. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 2014;39:862.

    Article  CAS  Google Scholar 

  31. Fukushima S, Karube Y, Kawakami H. Preparation of ultrafine uniform electrospun polyimide nanofiber. Polym J 2010;42:514.

    Article  CAS  Google Scholar 

  32. Chailek N, Daranarong D, Punyodom W, Molloy R, Worajittiphon P. Crosslinking assisted fabrication of ultrafine poly(vinyl alcohol)/functionalized graphene electrospun nanofibers for crystal violet adsorption. J Appl Polym Sci 2018;135:46318.

    Article  Google Scholar 

  33. Arai T, Kawakami H. Ultrafine electrospun nanofiber created from cross-linked polyimide solution. Polymer 2012;53:2217.

    Article  CAS  Google Scholar 

  34. Jian SJ, Zhu J, Jiang SH, Chen SL, Song YH, Duan GG, Zhang YF, Hou HQ. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv 2018;8:4794.

    Article  CAS  Google Scholar 

  35. Pusporini P, Edikresnha D, Sriyanti I, Suciati T, Munir MM, Khairurrijal K. Electrospun polyvinylpyrrolidone (PVP)/green tea extract composite nanofiber mats and their antioxidant activities. Mater Res Expres 2018;5:054001.

    Article  Google Scholar 

  36. Atchison JS, Schauer CL. Fabrication and characterization of electrospun pristine and fluorescent composite poly (acrylic acid) ultra-fine fibers. J Eng Fibers Fabr 2012;7:50.

    CAS  Google Scholar 

  37. Higashi S, Hirai T, Matsubara M, Yoshida H, Beniya A. Dynamic viscosity recovery of electrospinning solution for stabilizing elongated ultrafine polymer nanofiber by TEMPO-CNF. Sci Rep 2020;10:13427.

    Article  CAS  Google Scholar 

  38. Zheng JY, Zhuang MF, Yu ZJ, Zheng GF, Zhao Y, Wang H, Sun DH. The effect of surfactants on the diameter and morphology of electrospun ultrafine nanofiber. J Nanomater 2014;2014:1.

    Article  Google Scholar 

  39. Rutledge GC, Fridrikh SV. Formation of fibers by electrospinning. Adv Drug Delivery Rev 2007;59:1384.

    Article  CAS  Google Scholar 

  40. Qi L, Liu JG, Yang Y, Guo CY, Huangfu MG, Zhang Y. Solvent-resistant ultrafine nonwoven fibrous membranes by ultraviolet-assisted electrospinning of organo-soluble photosensitive polyimide resin. J Appl Polym Sci 2020;138:50048.

    Article  Google Scholar 

  41. Zheng Y, Zhuang C, Gong RH, Zeng Y. Electric field design for multijet electropsinning with uniform electric field. Ind Eng Chem Res 2014;53:14876.

    Article  CAS  Google Scholar 

  42. Liu SL, Huang YY, Zhang HD, Sun B, Zhang JC, Long YZ. Needleless electrospinning for large scale production of ultrathin polymer fibres. Mater Res Innov 2014;18:833.

    Google Scholar 

  43. Zhang CC, Chang MW, Ahmad Z, Hu WW, Zhao D, Li JS. Stable single device multi-pore electrospraying of polymeric microparticles via controlled electrostatic interactions. RSC Adv 2015;5:87919.

    Article  CAS  Google Scholar 

  44. Duby MN, Deng WW, Kim K, Gomez T, Gomez A. Stabilization of monodisperse electrosprays in the multi-jet mode via electric field enhancement. J Aerosol Sci 2006;37:306.

    Article  CAS  Google Scholar 

  45. Al-Mezrakchi RYH. An investigation into scalability production of ultra-fine nanofiber using electrospinning systems. Fiber Polym 2018;19:105.

    Article  CAS  Google Scholar 

  46. Li X, Bian FG, Lin JY, Zeng YC. Effect of electric field on the morphology and mechanical properties of electrospun fibers. RSC Adv 2016;6:50666.

    Article  CAS  Google Scholar 

  47. Gupta A, Ayithapu P, Singhal R. Study of the electric field distribution of various electrospinning geometries and its effect on the resultant nanofibers using finite element simulation. Chem Eng Sci 2021;235:116463.

    Article  CAS  Google Scholar 

  48. Xie S, Zeng YC. Effects of electric field on multineedle electrospinning: experiment and simulation study. Ind Eng Chem Res 2012;51:5336.

    Article  CAS  Google Scholar 

  49. Li X, Lin JY, Zeng YC. Electric field distribution and initial jet motion induced by spinneret configuration for molecular orientation in electrospun fibers. Eur Polym J 2018;98:330.

    Article  CAS  Google Scholar 

  50. Niu HT, Lin T, Wang XG. Needleless Electrospinning I A Comparison of Cylinder and Disk Nozzles. J. Appl. Polym. Sci. 2009;114:3524.

    Article  CAS  Google Scholar 

  51. Zhang SC, Liu H, Yin X, Li ZL, Yu JY, Ding B. Tailoring mechanically robust poly (m-phenylene isophthalamide) nanofiber/nets for ultrathin high-efficiency air filter. Sci Rep 2017;7:40550.

    Article  CAS  Google Scholar 

  52. De Vrieze S, Van Camp T, Nelvig A, Hagstrom B, Westbroek P, De Clerck K. The effect of temperature and humidity on electrospinning. J Mater Sci 2009;44:1357.

    Article  Google Scholar 

  53. Liang T, Parhizkar M, Edirisinghe M, Mahalingam S. Effect of humidity on the generation and control of the morphology of honeycomb-like polymeric structures by electrospinning. Eur Polym J 2014;61:72.

    Article  CAS  Google Scholar 

  54. Fashandi H, Karimi M. Comparative studies on the solvent quality and atmosphere humidity for electrospinning of nanoporous polyetherimide fibers. Ind Eng Chem Res 2014;53:235.

    Article  CAS  Google Scholar 

  55. Chen HB, Li HY, Ma XL, He WL, Tan J, Yang WM. Large scaled fabrication of microfibers by air-suction assisted needleless melt electrospinning. Fibers Polym 2016;17:576.

    Article  Google Scholar 

  56. Tian D, He JH. Control of macromolecule chains structure in a nanofiber. Polymers 2020;12:2305.

    Article  CAS  Google Scholar 

  57. Sinha-Ray S, Lee MW, Sinha-Ray S, An S, Pourdeyhimi B, Yoon S, Yarin AL. Supersonic nanoblowing: a new ultra-stiff phase of nylon 6 in 20–50 nm confinement. J Mater Chem C 2013;1:3491.

    Article  CAS  Google Scholar 

  58. Rajgarhia S, Jana SC. Influence of secondary stretching on diameter and morphology of bicomponent polymer nanofibers produced by gas jet fiber process. Polymer 2017;123:219.

    Article  CAS  Google Scholar 

  59. Zhou YM, Wang HB, He JX, Qi K, Ding B, Cui SZ. Investigation of parameters for preparing nanofiber yarn via a stepped airflow-assisted electrospinning. Fibers Polym 2018;19:2169.

    Article  CAS  Google Scholar 

  60. Müller F, Jokisch S, Bargel H, Scheibel T. Centrifugal electrospinning enables the production of meshes of ultrathin polymer fibers. ACS Appl Polym Mater 2020;2:4360.

    Article  Google Scholar 

  61. Valipouri A, Ravandi SAH, Pishevar A, Parau EI. Experimental and numerical study on isolated and non-isolated jet behavior through centrifuge spinning system. Int J Multiphas Flow 2015;69:93.

    Article  CAS  Google Scholar 

  62. Lu Y, Fu K, Zhang S, Li Y, Chen C, Zhu JD, Yanilmaz M, Dirican M, Zhang XW. Centrifugal spinning: a novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. J Power Sour 2015;273:502.

    Article  CAS  Google Scholar 

  63. Kancheva M, Toncheva A, Manolova N, Rashkov I. Advanced centrifugal electrospinning setup. Mater Lett 2014;136:150.

    Article  CAS  Google Scholar 

  64. Zhang XW, Lu Y. Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost. Polym Rev 2014;54:677.

    Article  CAS  Google Scholar 

  65. Liao CC, Hou SS, Wang CC, Chen CY. Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: the effects of molecular motion and conformation in solutions. Polymer 2010;51:2887.

    Article  CAS  Google Scholar 

  66. Chen G, Xu YF, Shi TT, Wu XW, Zhang XG, Wen RL, Liu YG, Fang MH, Min X, Huang ZH. Preparation and properties of polyacrylonitrile/polyethylene glycol composite fibers phase change materials by centrifugal spinning. Mater Res Express 2019;6:095502.

    Article  CAS  Google Scholar 

  67. Dabirian F, Ravandi SAH, Pishevar AR, Abuzade RA. A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems. J Electrostat 2011;69:540.

    Article  Google Scholar 

  68. Chang WM, Wang CC, Chen CY. The combination of electrospinning and forcespinning: effects on a viscoelastic jet and a single nanofiber. Chem Eng J 2014;244:540.

    Article  CAS  Google Scholar 

  69. Hsu HH, Chiu YJ, Li JW, Tseng HF, Chang KC, Chen JT. Alignment-improved and diameter-reduced electrospun polymer fibers via the hot-stretching process. Macromol Mater Eng 2020;305:1900637.

    Article  CAS  Google Scholar 

  70. He B, Tian L, Li J, Pan ZJ. Effect of hot-stretching on morphology and mechanical properties of electrospun PMIA nanofibers. Fibers Polym 2013;14:405.

    Article  CAS  Google Scholar 

  71. Sullivan ST, Tang C, Kennedy A, Talwa S, Khan SA. Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocolloid 2014;35:36.

    Article  CAS  Google Scholar 

  72. Song ZY, Hou XX, Zhang LQ, Wu SZ. Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electrospun partially aligned polyacrylonitrile (PAN) nanocomposites. Materials 2011;4:621.

    Article  CAS  Google Scholar 

  73. Sui G, Sun FJ, Yang XP, Ji JY, Zhong WH. Highly aligned polyacrylonitrile-based nano-scale carbon fibres with homogeneous structure and desirable properties. Compos Sci Technol 2013;87:77.

    Article  CAS  Google Scholar 

  74. Liu H, Liu LF, Yu JY, Yin X, Ding B. High-efficiency and super-breathable air filters based on biomimetic ultrathin nanofiber networks. Compos Commun 2020;22:100493.

    Article  Google Scholar 

  75. Zhang SC, Liu H, Tang N, Ali N, Yu JY, Ding B. Highly efficient, transparent, and multifunctional air filters using self-assembled 2D nanoarchitectured fibrous networks. ACS Nano 2019;13:13501.

    Article  CAS  Google Scholar 

  76. Tian CC, Wu F, Jiao WL, Liu XY, Yin X, Si Y, Yu JY, Ding B. Antibacterial and antiviral N-halamine nanofibrous membranes with nanonet structure for bioprotective applications. Compos Commun 2021;24:100668.

    Article  Google Scholar 

  77. Riazi K, Kubel J, Abbasi M, Bachtin K, Indris S, Ehrenberg H, Kádárd R, Wilhelm M. Polystyrene comb architectures as model systems for the optimized solution electrospinning of branched polymers. Polymer 2016;104:240.

    Article  CAS  Google Scholar 

  78. Mahalingam S, Matharu R, Homer-Vanniasinkam S, Edirisinghe M. Current methodologies and approaches for the formation of core–sheath polymer fibers for biomedical applications. Appl Phys Rev 2020;7:041302.

    Article  CAS  Google Scholar 

  79. Xue JJ, Wu T, Dai YQ, Xia YN. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 2019;119:5298.

    Article  CAS  Google Scholar 

  80. Qin XH, Yang EL, Li N, Wang SY. Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J Appl Polym Sci 2007;103:3865.

    Article  CAS  Google Scholar 

  81. Lei SL, Xiong CD, Quan ZZ, Qin XH, Yu JY. Controlled stretching of the first spiral in electrospinning whipping jet via surface charge. Polymer 2021;217:123443.

    Article  CAS  Google Scholar 

  82. Taylor G. Electrically driven jets. Proc R Soc Lond Ser A 1969;313:453.

    Article  Google Scholar 

  83. Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer 2008;49:2387.

    Article  CAS  Google Scholar 

  84. He JH, Wu Y, Zuo WW. Critical length of straight jet in electrospinning. Polymer 2005;46:12637.

    Article  CAS  Google Scholar 

  85. Qin XH, Wan YQ, He JH, Zhang J, Yu JY, Wang SY. Effect of LiCl on electrospinning of PAN polymer solution: theoretical analysis and experimental verification. Polymer 2004;45:6409.

    Article  CAS  Google Scholar 

  86. Qin XH, Jia L, Lu WY, Shou DH, Fan JT. Stretching of the steady jet in electrospinning: theoretical analysis and experimental verification. Text Res J 2011;81:388.

    Article  CAS  Google Scholar 

  87. Lei SL, Quan ZZ, Qin XH, Yu JY. Asymptotic decay of velocity of whipping jet in electrospinning. Polymer 2021;217:123456.

    Article  CAS  Google Scholar 

  88. Fridrikh SV, Yu JH, Brenner PB, Rutledge GC. Controlling the fiber diameter during electrospinning. Phys Rev Lett 2003;90:144502.

    Article  Google Scholar 

  89. Schubert DW, Allen V, Dippel U. Revealing novel power laws and quantization in electrospinning considering jet splitting-toward predicting fiber diameter and its distribution part II experimental. Macromol Theory Simul 2019;28:1900006.

    Article  Google Scholar 

  90. Arumugam GK, Khan S, Heiden PA. Comparison of the effects of an ionic liquid and other salts on the properties of electrospun fibers, 2-poly(vinyl alcohol). Macromol Mater Eng 2009;294:45–53.

    Article  CAS  Google Scholar 

  91. Moghe AK, Hufenus R, Hudson SM, Gupta BS. Effect of the addition of a fugitive salt on electrospinnability of poly(epsilon-caprolactone). Polymer 2009;50:331118.

    Article  Google Scholar 

  92. Jia L, Qin XH. The effect of different surfactants on the electrospinning poly(vinyl alcohol) (PVA) nanofibers. J Therm Anal Calorim 2013;112:595–605.

    Article  CAS  Google Scholar 

  93. Tripatanasuwan S, Zhong ZX, Reneker DH. Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution. Polymer 2007;48:5742.

    Article  CAS  Google Scholar 

  94. Bubakir MM, Li HY, Wu WF, Li XH, Ma SA, Yang WM. Applications of web produced by hot air assisted melt differential electrospinning method. IOP Conf Series 2014;64:012052.

    Article  CAS  Google Scholar 

  95. Zhmayev E, Cho D, Joo YL. Nanofibers from gas-assisted polymer melt electrospinning. Polymer 2010;51:4140.

    Article  CAS  Google Scholar 

  96. Youm JS, Kim JH, Kim CH, Kim JC, Kim YA, Yang KS. Densifying and strengthening of electrospun polyacrylonitrile-based nanofibers by uniaxial two-step stretching. J Appl Polymer Sci 2016;133:43945.

    Article  Google Scholar 

  97. Wu SZ, Zhang F, Yu YH, Li P, Yang XP, Lu JG, Ryu S. Preparation of PAN-based carbon nanofibers by hot-stretching. Compos Interface 2008;15:671–7.

    Article  CAS  Google Scholar 

  98. Robinson AJ, Perez-Nava A, Ali SC, Gonzalez-Campos JB, Holloway JL, Cosgriff-Hernandez EM. Comparative analysis of fiber alignment methods in electrospinning. Matter 2021;4:821.

    Article  CAS  Google Scholar 

  99. Hung CH, Leung WWF. Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol 2011;79:34.

    Article  CAS  Google Scholar 

  100. Wang R, Liu Y, Li B, Hsiao BS, Chu B. Electrospun nanofibrous membranes for high flux microfiltration. J Membrane Sci 2012;392:167.

    Article  Google Scholar 

  101. Zhang YY, Yuan S, Feng X, Li HW, Zhou JW, Wang B. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. J Am Chem Soc 2016;138:5785.

    Article  CAS  Google Scholar 

  102. Wang XX, Yu GF, Zhang J, Yu M, Ramakrishna S, Long YZ. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Prog Mater Sci 2021;115:100704.

    Article  CAS  Google Scholar 

  103. Chronakis IS, Grapenson S, Jakob A. Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer 2006;47:1597.

    Article  CAS  Google Scholar 

  104. Celebioglu A, Uyar T. Metronidazole/hydroxypropyl-beta-cyclodextrin inclusion complex nanofibrous webs as fast-dissolving oral drug delivery system. Int J Pharm 2019;572:118828.

    Article  CAS  Google Scholar 

  105. Zamani M, Prabhakaran MP, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine 2013;8:2997.

    Google Scholar 

  106. Sapudom J, Rubner S, Martin S, Kurth T, Riedel S, Mierke CT, Pompe T. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks. Biomaterials 2015;52:367.

    Article  CAS  Google Scholar 

  107. Zhou QH, Xie J, Bao M, Yuan HH, Ye ZY, Lou XX, Zhang YZ. Engineering aligned electrospun PLLA microfibers with nano-porous surface nanotopography for modulating the responses of vascular smooth muscle cells. J Mater Chem B 2015;3:4439.

    Article  CAS  Google Scholar 

  108. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014;185:12.

    Article  CAS  Google Scholar 

  109. Shen W, Ao F, Wang L, Ge XM, Ren HJ, Fan GD, Ning YL. Effects on ultrafine fibers with electrospun bead jet method based on 3-arm PLA. Mater Lett 2020;261:127137.

    Article  CAS  Google Scholar 

  110. Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 2009;61:1033.

    Article  CAS  Google Scholar 

  111. Herwan J, Al-Bahkali E, Khalil KA, Souli M. Load bearing enhancement of pin joined composite laminates using electrospun polyacrylonitrile nanofiber mats. Arab J Chem 2016;9:262.

    Article  CAS  Google Scholar 

  112. Palazzetti R, Zucchelli A. Electrospun nanofibers as reinforcement for composite laminates materials—a review. Compos Struct 2017;182:711.

    Article  Google Scholar 

  113. An D, Lotfian S, Mesbah D, Ayre D, Yoosefinejad A, Thakur VK, Nezhad HY. Ultra-thin electrospun nanofibers for development of damage-tolerant composite laminates. Mater Today Chem 2019;14:100202.

    Article  CAS  Google Scholar 

  114. Jia XS, Tang CC, Yan X, Yu GF, Li JT, Zhang HD, Li JJ, Gu CZ, Long YZ. Flexible polyaniline/poly(methyl methacrylate) composite fibers via electrospinning and in situ polymerization for ammonia gas sensing and strain sensing. J Nanomater 2016;2016:9102828.

    Article  Google Scholar 

  115. Bisht GS, Canton G, Mirsepassi A, Kulinsky L, Oh S, Dunn-Rankin D, Madou MJ. Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Lett 2011;11:1831.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Fundamental Research Funds for the Central Universities (2232020D-15, 2232020A-08, 2232020G-01, 2232020D-14 and 2232019D3-11) and grants (51773037, 51973027, 51803023, 52003044 and 61771123) from the National Natural Science Foundation of China. This work has also been supported by the Chang Jiang Scholars Program and the Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-03-E00023) to Prof. Xiaohong Qin, the Shanghai Sailing Program (19YF1400700), the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (SKL201906SIC), Young Elite Scientists Sponsorship Program by CAST and DHU Distinguished Young Professor Program to Prof. Liming Wang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Wang or Xiaohong Qin.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Xiong, J., Lei, S. et al. Diameter Refinement of Electrospun Nanofibers: From Mechanism, Strategies to Applications. Adv. Fiber Mater. 4, 145–161 (2022). https://doi.org/10.1007/s42765-021-00113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00113-8

Keywords

Navigation