Skip to main content
Log in

Improved Properties of Cellulose/Antarctic Krill Protein Composite Fibers with a Multiple Cross-Linking Network

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

In the present work, novel cellulose (C)/Antarctic krill protein (AKP) composite fibers with a multiple cross-linking network were prepared using glutaraldehyde (GA) as cross-linking agent to improve the fiber's properties. The structure and properties of fibers were characterized by different techniques including FTIR, NMR, XRD, SAXS, SEM and electronic single yarn strength tester, etc. The results indicate that the reaction of GA with C and AKP separately forms a multiple cross-linking network. The C/AKP composite fibers with a multiple cross-linking network has stronger crystallization ability, higher orientation degree and deeper trench than C/AKP composite fibers. The breaking stress and wet strength of composite fibers reaches the maximum of 1.04 cN/dtex and 0.55 cN/dtex at GA content of 0.2 wt%. And the fatigue and tensile properties, hygroscopicity and moisture retention of C/AKP composite fibers has been improved. The development of C/AKP composite fibers with a multiple cross-linking network could be a promising candidate for biomedicine applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiang W, Gu J. Nanocrystalline cellulose isolated from different renewable sources to fabricate natural rubber composites with outstanding mechanical properties. Cellulose. 2020. https://doi.org/10.1007/s10570-020-03209-3.

    Article  Google Scholar 

  2. Drakopoulos SX, Karger-Kocsis J, Kmetty A, Lendvai L, Psarras GC. Thermoplastic starch modified with microfibrillated cellulose and natural rubber latex: a broadband dielectric spectroscopy study. Carbohydr Polym. 2017. https://doi.org/10.1016/j.carbpol.2016.10.036.

    Article  Google Scholar 

  3. Dionisi D, Anderson JA, Aulenta F, McCue A, Paton G. The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. J Chem Technol Biotechnol. 2015. https://doi.org/10.1002/jctb.4544.

    Article  Google Scholar 

  4. Nasrollahzadeh M, Shafiei N, Nezafat Z, Soheili Bidgoli NS, Soleimani F. Recent progresses in the application of cellulose, starch, alginate, gum, pectin, chitin and chitosan based (nano)catalysts in sustainable and selective oxidation reactions: a review. Carbohydr Polym. 2020. https://doi.org/10.1016/j.carbpol.2020.116353.

    Article  Google Scholar 

  5. Demircan D, Zhang B. Facile synthesis of novel soluble cellulose-grafted hyperbranched polymers as potential natural antimicrobial materials. Carbohydr Polym. 2017. https://doi.org/10.1016/j.carbpol.2016.11.076.

    Article  Google Scholar 

  6. Cavan EL, Belcher A, Atkinson A, Hill SL, Kawaguchi S, McCormack S, Meyer B, Nicol S, Ratnarajah L, Schmidt K, Steinberg DK, Tarling GA, Boyd PW. The importance of Antarctic krill in biogeochemical cycles. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-12668-7.

    Article  Google Scholar 

  7. Siegel V, Watkins JL. Distribution, biomass and demography of Antarctic krill, Euphausia superba. In: Siegel V, editors. Biology and Ecology of Antarctic Krill. Advances in Polar Ecology. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-29279-3_2.

  8. Ryabov AB, de Roos AM, Meyer B, Kawaguchi S, Blasius B. Competition-induced starvation drives large-scale population cycles in Antarctic krill. Nat Ecol Evol. 2017. https://doi.org/10.1038/s41559-017-0177.

    Article  Google Scholar 

  9. Wang LZ, Xue CH, Xue Y, Wang YM, Li ZJ. Optimization and evaluation of a novel technique for hydrolyzing Antarctic krill (Euphausia superba) proteins. Food Bioprod Process. 2015. https://doi.org/10.1016/j.fbp.2014.08.010.

    Article  Google Scholar 

  10. Chen J, Guo J, Zhao M, Zhang R, Guan FC. Hydrogen bonding in chitosan/Antarctic krill protein composite system: study on construction and enhancement mechanism. Int J Biol Macromol. 2020. https://doi.org/10.1016/j.ijbiomac.2019.09.123.

    Article  Google Scholar 

  11. Song JX, Guo J, Liu YF, Tan Q, Zhang S, Yu Y. A comparative study on properties of cellulose/Antarctic Krill protein composite fiber by centrifugal spinning and wet spinning. Fiber Polym. 2019. https://doi.org/10.1007/s12221-019-8725-2.

    Article  Google Scholar 

  12. Ma Y, Guo J, Zhao M, Gong YM, Qiao BY. Effect of coagulation bath temperature on mechanical, morphological, and thermal properties of cellulose/Antarctic Krill protein composite fibers. Langmuir. 2020. https://doi.org/10.1021/acs.langmuir.0c01148.

    Article  Google Scholar 

  13. Meyer U, Müller K, Zollinger H. The temperature dependence of the rate of crosslinking with formaldehyde and of the hydrolysis of cotton cellulose. Text Res J. 2016. https://doi.org/10.1177/004051757604601205.

    Article  Google Scholar 

  14. Shao H, Sun H, Yang B, Zhang H, Hu Y. Facile and green preparation of hemicellulose-based film with elevated hydrophobicity via cross-linking with citric acid. RSC Adv. 2019. https://doi.org/10.1039/c8ra09937e.

    Article  Google Scholar 

  15. Kozlowska J, Stachowiak N, Sionkowska A. Collagen/gelatin/hydroxyethyl cellulose composites containing microspheres based on collagen and gelatin: design and evaluation. Polymers (Basel). 2018. https://doi.org/10.3390/polym10040456.

    Article  Google Scholar 

  16. Nagireddi S, Katiyar V, Uppaluri R. Pd(II) adsorption characteristics of glutaraldehyde cross-linked chitosan copolymer resin. Int J Biol Macromol. 2017. https://doi.org/10.1016/j.ijbiomac.2016.09.088.

    Article  Google Scholar 

  17. Shaimi R, Low SC. Prolonged protein immobilization of biosensor by chemically cross-linked glutaraldehyde on mixed cellulose membrane. J Polym Eng. 2016. https://doi.org/10.1515/polyeng-2015-0308.

    Article  Google Scholar 

  18. Li DY, Song JY, He Y, Liang LF. Rheological properties and fiber-forming properties of chitosan spinning stock solution modified by glutaraldehyde cross-linking. J Chengdu Text Coll. 2016. https://doi.org/10.3969/j.issn.1008-5580.2016.03.015.

    Article  Google Scholar 

  19. Mou X, Peng P, Sun Q, He XX, Sun KM, Huang ST, Yin LH, Yu ZH. Effect of methanol and glutaraldehyde cross-linking agents on the performance of silk fibroin/gelatin porous scaffolds. Funct Mater. 2015. https://doi.org/10.3969/j.issn.1001-9731.2015.03.004.

    Article  Google Scholar 

  20. Jeon JG, Kim HC, Palem RR, Kim J, Kang TJ. Cross-linking of cellulose nanofiber films with glutaraldehyde for improved mechanical properties. Mater Lett. 2019. https://doi.org/10.1016/j.matlet.2019.05.002.

    Article  Google Scholar 

  21. Zhang R, Guo J, Liu YF, Chen S, Zhang S, Yu Y. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers. Carbohydr Polym. 2018. https://doi.org/10.1016/j.carbpol.2018.02.013.

    Article  Google Scholar 

  22. He J, Wang S. haracterization of natural cellulose by carbon nuclear magnetic resonance spectroscopy. J Text Res. 2008. https://doi.org/10.3321/j.issn:0253-9721.2008.05.001.

    Article  Google Scholar 

  23. Fan HY, Duquette D, Dumont MJ, Simpson BK. Salmon skin gelatin-corn zein composite films produced via crosslinking with glutaraldehyde: optimization using response surface methodology and characterization. Int J Biol Macromol. 2018. https://doi.org/10.1016/j.ijbiomac.2018.08.084.

    Article  Google Scholar 

  24. Sutaphanit P, Chitprasert P. Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chem. 2014. https://doi.org/10.1016/j.foodchem.2013.10.159.

    Article  Google Scholar 

  25. Mehler M, Eckert CE, Leeder AJ, Kaur J, Fischer T, Kubatova N, Brown LJ, Brown RCD, Becker-Baldus J, Wachtveitl J, Glaubitz C. Chromophore distortions in photointermediates of proteorhodopsin visualized by dynamic nuclear polarization-enhanced solid-state NMR. J Am Chem Soc. 2017. https://doi.org/10.1021/jacs.7b05061.

    Article  Google Scholar 

  26. Pfleger N, Lorch M, Woerner AC, Shastri S, Glaubitz C. Characterisation of Schiff base and chromophore in green proteorhodopsin by solid-state NMR. J Biomol NMR. 2008. https://doi.org/10.1007/s10858-007-9203-5.

    Article  Google Scholar 

  27. Shah R, Huang S, Pingali SV, Sawada D, Pu Y, Rodriguez M Jr, Ragauskas AJ, Kim SH, Evans BR, Davison BH, O’Neill H. Hemicellulose-cellulose composites reveal differences in cellulose organization after dilute acid pretreatment. Biomacromolecules. 2019. https://doi.org/10.1021/acs.biomac.8b01511.

    Article  Google Scholar 

  28. Gbabode G, Delvaux M, Schweicher G, Andreasen JW, Nielsen MM, Geerts YH. Unique crystal orientation of poly(ethylene oxide) thin films by crystallization using a thermal gradient. Macromolecules. 2017. https://doi.org/10.1021/acs.macromol.7b00441.

    Article  Google Scholar 

  29. Medina L, Nishiyama Y, Daicho K, Saito T, Yan M, Berglund LA. Nanostructure and properties of nacre-inspired clay/cellulose nanocomposites—synchrotron X-ray scattering analysis. Macromolecules. 2019. https://doi.org/10.1021/acs.macromol.9b00333.

    Article  Google Scholar 

  30. Li ZK, Wang JB, Li XH, Wang Y, Fan LJ, Yang SG, Guo MY, Li XP, Tu YF. Supramolecular and physically double-cross-linked network strategy toward strong and tough elastic fibers. ACS Macro Lett. 2020. https://doi.org/10.1021/acsmacrolett.0c00579.

    Article  Google Scholar 

  31. Sun J, Jing L, Liu H, Huang D. Generating nanotopography on PCL microfiber surface for better cell-scaffold interactions. Procedia Manuf. 2020. https://doi.org/10.1016/j.promfg.2020.05.090.

    Article  Google Scholar 

  32. Dikici S, Claeyssens F, MacNeil S. Pre-seeding of simple electrospun scaffolds with a combination of endothelial cells and fibroblasts strongly promotes angiogenesis. Tissue Eng Regen Med. 2020. https://doi.org/10.1007/s13770-020-00263-7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers: 51773024 and 51373027), Innovation Team Foundation of Liaoning (grant number: LT2017017) and Nature Science Foundation of Liaoning Province (grant number: 20180550429).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Guo, Yuanfa Liu or Xueyong Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Guo, J., Liu, Y. et al. Improved Properties of Cellulose/Antarctic Krill Protein Composite Fibers with a Multiple Cross-Linking Network. Adv. Fiber Mater. 4, 256–267 (2022). https://doi.org/10.1007/s42765-021-00103-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00103-w

Keywords

Navigation