Skip to main content
Log in

Photo-responsive Behaviors of Hydrogen-Bonded Polymer Complex Fibers Containing Azobenzene Functional Groups

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Two azobenzene compounds, Disperse Red 1 (DR1) and 4-aminoazobenzene (Aazo), were separately linked to poly(acrylic acid) (PAA) side chains to form PAA-DR1 and PAA-Aazo, which were then associated with poly(ethylene oxide) (PEO) to produce hydrogen-bonded polymer complex fibers. After UV irradiation, the initial modulus and yielding strength of PAA-Aazo/PEO fiber were both increased tremendously, while the mechanical properties of PAA-DR1/PEO fiber only slightly changed. After drawn and dried in vacuum, PAA-DR1/PEO and PAA-Aazo/PEO fibers with an extended length exhibited a contraction of 20% and 25% under UV irradiation, showing potential for photo-actuation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chang H, Luo J, Gulgunje PV, Kumar S. Structural and functional fibers. Annu Rev Mater Res. 2017;47:331–59.

    Article  CAS  Google Scholar 

  2. Park JH, Rutledge GC. Advanced polymer fibers: high performance and ultrafine. Macromolecules. 2017;50:5627–42.

    Article  CAS  Google Scholar 

  3. Yan W, Page A, Nguyen-Dang T, Qu Y, Sordo F, Wei L, Sorin F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv Mater. 2019;31:1802348.

    Article  Google Scholar 

  4. Yu S, Xiang H, Zhou J, Qiu T, Hu Z, Zhu M. Typical polymer fiber materials: an overview and outlook. Acta Polym Sin. 2020;51:1–16.

    Google Scholar 

  5. Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ, Machida A, Rizkalla SH, Triantafillou TC. Fiber-reinforced polymer composites for construction-state-of-the-art review. J Compo Constr. 2002;6:73–87.

    Article  CAS  Google Scholar 

  6. Stoychev GV, Ionov L. Actuating fibers: design and applications. ACS Appl Mater Interfaces. 2016;8:24281–94.

    Article  CAS  Google Scholar 

  7. Huang W, Liu D, Li J, Zhu L, Yang S. Polymer complexation for functional fibers. Sci China Technol Sci. 2019;62:931–44.

    Article  Google Scholar 

  8. Liu D, Li J, Huang W, Yang S. Progress in polymer complex fibers. Acta Polym Sin. 2018;49:445–55.

    Google Scholar 

  9. Mirvakili SM, Hunter IW. Artificial muscles: mechanisms, applications, and challenges. Adv Mater. 2018;30:1704407.

    Article  Google Scholar 

  10. Bandara HMD, Burdette SC. Photoisomerization in different classes of azobenzene. Chem Soc Rev. 2012;41:1809–25.

    Article  CAS  Google Scholar 

  11. Kumar GS, Neckers DC. Photochemistry of azobenzene-containing polymers. Chem Rev. 1989; 89:1915–25.

    Article  CAS  Google Scholar 

  12. Barrett CJ, Mamiya J, Yager KG, Ikeda T. Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter. 2007;3:1249–61.

    Article  CAS  Google Scholar 

  13. Weis P, Wu S. Light-switchable azobenzene-containing macromolecules: from UV to near infrared. Macromol Rapid Commun. 2018; 39:1700220.

    Article  Google Scholar 

  14. Van Oosten CL, Corbett D, Davies D, Warner M, Bastiaansen CWM, Broer DJ. Bending dynamics and directionality reversal in liquid crystal network photoactuators. Macromolecules. 2008; 41:8592–6.

    Article  Google Scholar 

  15. Finkelmann H, Nishikawa E, Pereira GG, Warner M. A new opto-mechanical effect in solids. Phys Rev Lett.2001; 87:015501.

    Article  CAS  Google Scholar 

  16. Li M, Keller P, Li B, Wang X, Brunet M. Light-driven side-on nematic elastomer actuators. Adv Mater.2003;15:569–72.

    Article  CAS  Google Scholar 

  17. Yu Y, Nakano M, Ikeda T. Photomechanics: directed bending of a polymer film by light. Nature.2003; 425:145.

    Article  CAS  Google Scholar 

  18. Iamsaard S, Asshoff SJ, Matt B , Kudernac T, Cornelissen JJ, Fletcher SP, Katsonis N. Conversion of light into macroscopic helical motion. Nat Chem. 2014; 6:229–35.

    Article  CAS  Google Scholar 

  19. Gelebart AH, Jan Mulder D, Varga M, Konya A, Vantomme G, Meijer EW, Selinger RLB, Broer DJ. Making waves in a photoactive polymer film. Nature.2017;546:632–6.

    Article  CAS  Google Scholar 

  20. Pang X, Qin L, Xu B, Liu Q, Yu Y. Ultralarge contraction directed by light-driven unlocking of prestored strain energy in linear liquid crystal polymer fibers.Adv Funct Mater. 2020;30:1704407.

    Article  Google Scholar 

  21. Yoshino T, Kondo M, Mamiya J, Kinoshita M, Yu Y, Ikeda T. Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv Mater. 2010;22:1361–3.

    Article  CAS  Google Scholar 

  22. Fang L, Zhang H, Li Z, Zhang Y, Zhang Y, Zhang H. Synthesis of reactive azobenzene main-chain liquid crystalline polymers via michael addition polymerization and photomechanical effects of their supramolecular hydrogen-bonded fibers. Macromolecules. 2013;46:7650–60.

    Article  CAS  Google Scholar 

  23. Wang Z, Zhang H. Synthesis of an azobenzene-containing main-chain crystalline polymer and photodeformation behaviors of its supramolecular hydrogen-bonded fibers. Chin J Polym Sci. 2020;38:37–44.

    Article  CAS  Google Scholar 

  24. Ichimura K. Photoalignment of liquid-crystal systems. Chem Rev. 2000;100:1847–74.

    Article  CAS  Google Scholar 

  25. Yang S, Ma S, Wang C, Xu J, Zhu M. Polymer complexation by hydrogen bonding at the interface. Aust J Chem. 2014;67:11–21.

    Article  CAS  Google Scholar 

  26. Lutkenhaus JL, Hrabak KD, McEnnis K, Hammond PT. Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies. J Am Chem Soc. 2005;127:17228–34.

    Article  CAS  Google Scholar 

  27. Liu D, Zhu L, Huang W, Yue K, Yang S. Polymer complex fiber for linear actuation with high working density and stable catch-state. ACS Macro Lett. 2020;9:1507–13.

    Article  CAS  Google Scholar 

  28. Li J, Sun J, Wu D, Huang W, Zhu M, Reichmanis E, Yang S. Functionalization-directed stabilization of hydrogen-bonded polymer complex fibers: elasticity and conductivity. Adv Fiber Mater.2019;1:71–81.

    Article  Google Scholar 

  29. Nie J, Wang Z, Li J, Gong Y, Sun J, Yang S. Interface hydrogen-bonded core-shell nanofibers by coaxial electrospinning. Chin J Polym Sci.2017;35:1001–8.

    Article  CAS  Google Scholar 

  30. Sun J, Su C, Zhang X, Yin W, Xu J, Yang S. Reversible swelling-shrinking behavior of hydrogen-bonded free-standing thin film stabilized by catechol reaction. Langmuir. 2015;31:5147–54.

    Article  CAS  Google Scholar 

  31. Yang S, Zhang Y, Guan Y, Tan S, Xu J, Cheng S, Zhang X. Water uptake behavior of hydrogen-bonded PVPON-PAA LbL film. Soft Matter. 2006;2:699–704.

    Article  CAS  Google Scholar 

  32. Li J, Yang S. The effect of interchain hydrogen bond on the mechanical properties of poly(acrylic acid)-poly(ethylene oxide) complex films. Acta Polym Sin. 2019;50:857–62.

    CAS  Google Scholar 

  33. Wang Y, Liu X, Li S, Li T, Song Y, Li Z, Zhang W, Sun J. Transparent, healable elastomers with high mechanical strength and elasticity derived from hydrogen-bonded polymer complexes.ACS Appl Mater Interfaces. 2017;9:29120–9.

    Article  CAS  Google Scholar 

  34. Li J, Wang Z, Wen L, Nie J, Yang S, Xu J, Cheng SZ. Highly elastic fibers made from hydrogen-bonded polymer complex. ACS Macro Lett.2016;5:814–8.

    Article  CAS  Google Scholar 

  35. Garcia-Amoros J, Sanchez-Ferrer A, Massad WA, Nonell S, Velasco D. Kinetic study of the fast thermal cis-to-trans isomerisation of para-, ortho- and polyhydroxyazobenzenes. Phys Chem Chem Phys. 2010;12:13238–42.

    Article  CAS  Google Scholar 

  36. Hartley GS. The cis-form of azobenzene. Nature. 1937;140:281.

    Article  CAS  Google Scholar 

  37. Beharry AA, Woolley GA. Azobenzene photoswitches for biomolecules. Chem Soc Rev. 2011;40:4422–37.

    Article  CAS  Google Scholar 

  38. Tanchak OM, Barrett CJ. Light-induced reversible volume changes in thin films of azo polymers: the photomechanical effect. Macromolecules. 2005;38:10566–70.

    Article  CAS  Google Scholar 

  39. Dong J, Ozaki Y, Nakashima K. Infrared, raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules. 1997;30:1111–7.

    Article  CAS  Google Scholar 

  40. Ma S, Qi X, Cao Y, Yang S, Xu J. Hydrogen bond detachment in polymer complexes.Polymer. 2013;54:5382–90.

    Article  CAS  Google Scholar 

  41. Sukhishvili SA, Granick S. Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules. 2002;35:301–10.

    Article  CAS  Google Scholar 

  42. Cheng SZ, Wunderlich B. Study of crystallization of low-molecular mass poly(ethylene oxide) from the melt. Macromolecules. 1989;22:1866–73.

    Article  CAS  Google Scholar 

  43. Thompson HLJ, Fordyce DB. Sorption of water vapor by water-soluble polymers: kinetic, equilibrium, and glass temperature data. J Polym Sci. 1956;22:509.

    Article  Google Scholar 

  44. Siriwardane DA, Kulikov O, Batchelor BL, Liu ZW, Cue JM, Nielsen SO, Novak BM. UV- and Thermo-controllable azobenzene-decorated polycarbodiimide molecular springs. Macromolecules.2018;51:3722–30.

    Article  CAS  Google Scholar 

  45. Wani OM, Zeng H, Priimagi A. A light-driven artificial flytrap. Nat Commun. 2017;8:15546.

    Article  CAS  Google Scholar 

  46. Zeng H, Wani OM, Wasylczyk P, Kaczmarek R, Priimagi A. Self-regulating iris based on light-actuated liquid crystal elastomer. Adv Mater. 2017;29:1701814.

    Article  Google Scholar 

  47. Ge F, Yang R, Tong X, Camerel F, Zhao Y. A multifunctional dye-doped liquid crystal polymer actuator: light-guided transportation, turning in locomotion, and autonomous motion. Angew Chem. 2018;57:11758–63.

    Article  CAS  Google Scholar 

  48. da Cunha MP, Ambergen S, Debije MG, Homburg EFGA, den Toonder JMJ, Schenning APHJ. A soft transporter robot fueled by light. Adv Sci. 2020;7:1902842.

    Article  Google Scholar 

  49. Osada Y. Conversion of chemical into mechanical energy by synthetic-polymers. Adv Polym Sci. 1987;82:1–46.

    Article  CAS  Google Scholar 

  50. Vapaavuori J, Laventure A, Bazuin CG, Lebel O, Pellerin C. Submolecular plasticization induced by photons in azobenzene materials. J Am Chem Soc. 2015;137:13510–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (No. 51973029), and Science and Technology Commission of Shanghai Municipality (No. 20JC1414900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Yang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2369 kb)

Supplementary file2 (MP4 14293 kb)

Supplementary file3 (MP4 14727 kb)

Supplementary file4 (MP4 12470 kb)

Supplementary file5 (MP4 9968 kb)

Supplementary file6 (MP4 11994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Wang, W., Zhang, C. et al. Photo-responsive Behaviors of Hydrogen-Bonded Polymer Complex Fibers Containing Azobenzene Functional Groups. Adv. Fiber Mater. 3, 172–179 (2021). https://doi.org/10.1007/s42765-021-00080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00080-0

Keywords

Navigation