Skip to main content

Advertisement

Log in

Response Patterns of Soil Nitrogen Cycling to Crop Residue Addition: A Review

  • Review
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

The impact of adding crop residues to soil on nitrogen (N) cycling remains an area of ongoing research, as it is influenced by various mechanisms that differ across studies. Understanding the patterns of soil N cycling in response to crop residue addition and the underlying mechanisms is essential for optimizing crop residue management and sustaining agricultural production. The addition of crop residues can enhance crop N uptake by stimulating microbial N immobilization initially, followed by increased N mineralization and heterotrophic nitrification later in the season. However, it can also lead to increased N losses from the soil-plant system through processes like ammonia (NH3) volatilization, autotrophic nitrification, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA). On the other hand, crop residue addition can improve N retention in recalcitrant organic matter pools through abiotic N immobilization. The dominant mechanisms responsible for these effects can vary due to a combination of factors, resulting in a wide range of soil N cycling responses. Incorporating the simultaneous occurrence of various N processes with rate-based mechanisms may provide better predictions of soil N cycling response to crop residue addition. To validate these response patterns and quantify the influence of different factors, it is crucial to develop and refine rate-based N cycling models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abera G, Wolde-meskel E, Bakken LR (2012) Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents. Biol Fert Soils 48:51–66

    Article  CAS  Google Scholar 

  • Adair EC, Parton WJ, Del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burke IC, Hart SC (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Global Change Biol 14:2636–2660

    Article  Google Scholar 

  • Adamczyk B, Sietiö O-M, Straková P, Prommer J, Wild B, Hagner M, Pihlatie M, Fritze H, Richter A, Heinonsalo J (2019) Plant roots increase both decomposition and stable organic matter formation in boreal forest soil. Nat Commun 10:3982

    Article  PubMed  PubMed Central  Google Scholar 

  • Angst G, Pokorný J, Mueller CW, Prater I, Preusser S, Kandeler E, Meador T, Straková P, Hájek T, van Buiten G, Angst Š (2021) Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biol Biochem 159:108302

    Article  CAS  Google Scholar 

  • Bai R, Fang Y-T, Mo L-Y, Shen J-P, Song L-L, Wang Y-Q, Zhang L-M, He J-Z (2020) Greater promotion of DNRA rates and nrfA gene transcriptional activity by straw incorporation in alkaline than in acidic paddy soils. Soil Ecol Lett

  • Barrett JE, Burke IC (2000) Potential nitrogen immobilization in grassland soils across a soil organic matter gradient. Soil Biol Biochem 32:1707–1716

    Article  CAS  Google Scholar 

  • Begum N, Guppy C, Herridge D, Schwenke G (2014) Influence of source and quality of plant residues on emissions of N2O and CO2 from a fertile, acidic Black Vertisol. Biol Fert Soils 50:499–506

    Article  CAS  Google Scholar 

  • Berhane M, Xu M, Liang Z, Shi J, Wei G, Tian X (2020) Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis. Global Change Biol 26:2686–2701

    Article  Google Scholar 

  • Berntson G, Aber J (2000) Fast nitrate immobilization in N saturated temperate forest soils. Soil Biol Biochem 32:151–156

    Article  CAS  Google Scholar 

  • Cao Y, Sun H, Zhang J, Chen G, Zhu H, Zhou S, Xiao H (2018) Effects of wheat straw addition on dynamics and fate of nitrogen applied to paddy soils. Soil till Res 178:92–98

    Article  Google Scholar 

  • Cao Y, Zhao F, Zhang Z, Zhu T, Xiao H (2020) Biotic and abiotic nitrogen immobilization in soil incorporated with crop residue. Soil till Res 202:104664

    Article  Google Scholar 

  • Cao Y, He Z, Zhu T, Zhao F (2021) Organic-C quality as a key driver of microbial nitrogen immobilization in soil: a meta-analysis. Geoderma 383:114784

    Article  CAS  Google Scholar 

  • Chen H, Li X, Hu F, Shi W (2013) Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biol 19:2956–2964

    Article  Google Scholar 

  • Chen Z, Ding W, Xu Y, Müller C, Rütting T, Yu H, Fan J, Zhang J, Zhu T (2015) Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: evidences from a 15N tracing study to literature synthesis. Soil Biol Biochem 91:65–75

    Article  CAS  Google Scholar 

  • Chen J, Luo Y, van Groenigen KJ, Hungate BA, Cao J, Zhou X, Wang R-w (2018) A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci Adv 4:eaaq1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZX, Elrys AS, Zhang HM, Tu XS, Wang J, Cheng Y, Zhang JB, Cai ZC (2022) How does organic amendment affect soil microbial nitrate immobilization rate? Soil Biol Biochem 173

  • Chen H, Rosinger C, Blagodatsky S, Reichel R, Li B, Kumar A, Rothardt S, Luo J, Brüggemann N, Kage H, Bonkowski M (2023) Straw amendment and nitrification inhibitor controlling N losses and immobilization in a soil cooling-warming experiment. Sci Total Environ 870

  • Cheng Y, Cai Z, Chang SX, Wang J, Zhang J (2012) Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biol Fert Soils 48:941–946

    Article  CAS  Google Scholar 

  • Cheng Y, Wang J, Wang J, Chang SX, Wang S (2017) The quality and quantity of exogenous organic carbon input control microbial NO3 immobilization: a meta-analysis. Soil Biol Biochem 115:357–363

    Article  CAS  Google Scholar 

  • Cui YX, Moorhead DL, Wang XX, Xu MZ, Wang X, Wei XM, Zhu ZK, Ge TD, Peng SS, Zhu B, Zhang XC, Fang LC (2022) Decreasing microbial phosphorus limitation increases soil carbon release. Geoderma 419

  • Dai Z, Yu M, Chen H, Zhao H, Huang Y, Su W, Xia F, Chang SX, Brookes PC, Dahlgren RA, Xu J (2020) Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biol 26:5267–5276

    Article  Google Scholar 

  • Dan XQ, He MQ, Meng L, He XX, Wang XG, Chen SD, Cai ZC, Zhang JB, Zhu B, Müller C (2023) Strong rhizosphere priming effects on N dynamics in soils with higher soil N supply capacity: The ‘Matthew effect’ in plant-soil systems. Soil Biol Biochem 178

  • Davidson EA, Chorover J, Dail DB (2003) A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biol 9:228–236

    Article  Google Scholar 

  • De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866

    Article  Google Scholar 

  • de Graaff M-A, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064

    Article  PubMed  Google Scholar 

  • Demoling F, Figueroa D, Bååth E (2007) Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem 39:2485–2495

    Article  CAS  Google Scholar 

  • Deni J, Penninckx MJ (1999) Nitrification and autotrophic nitrifying bacteria in a hydrocarbon-polluted soil. Appl Environ Microb 65:4008–4013

    Article  CAS  Google Scholar 

  • Domeignoz-Horta LA, Pold G, Liu X-JA, Frey SD, Melillo JM, DeAngelis KM (2020) Microbial diversity drives carbon use efficiency in a model soil. Nat Commun 11:3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong WL, Yang Q, George TS, Yin HQ, Wang S, Bi JJ, Zhang JY, Liu XD, Song AL, Fan FL (2022) Investigating bacterial coupled assimilation of fertilizer-nitrogen and crop residue-carbon in upland soils by DNA-qSIP. Sci Total Environ 845

  • Duan Y, Chen L, Li YM, Li JY, Zhang CZ, Ma DH, Zhou GX, Zhang JB (2023) Nitrogen input level modulates straw-derived organic carbon physical fractions accumulation by stimulating specific fungal groups during decomposition. Soil till Res 225

  • Falih AMK, Wainwright M (1996) Microbial and enzyme activity in soils amended with a natural source of easily available carbon. Biol Fert Soils 21:177–183

    Article  CAS  Google Scholar 

  • Fan F, Yin C, Tang Y, Li Z, Song A, Wakelin SA, Zou J, Liang Y (2014) Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biol Biochem 70:12–21

    Article  CAS  Google Scholar 

  • Fang Y, Nazaries L, Singh BK, Singh BP (2018) Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Global Change Biol 24:2775–2790

    Article  Google Scholar 

  • Fisk LM, Barton L, Jones DL, Glanville HC, Murphy DV (2015) Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol Biochem 88:380–389

    Article  CAS  Google Scholar 

  • Fitzhugh RD, Lovett GM, Venterea RT (2003) Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA. Global Change Biol 9: 1591–1601

  • Gao WL, Fan CH, Zhang W, Li N, Liu HR, Chen M (2023) Heterotrophic nitrification of organic nitrogen in soils: process, regulation, and ecological significance. Biol Fert Soils 59:261–274

    Article  CAS  Google Scholar 

  • Gardner JB, Drinkwater LE (2009) The fate of nitrogen in grain cropping systems: a meta-analysis of 15 N field experiments. Ecol Appl 19:2167–2184

    Article  PubMed  Google Scholar 

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms–a review. Soil Biol Biochem 42:2058–2067

    Article  CAS  Google Scholar 

  • Glassman SI, Weihe C, Li J, Albright MB, Looby CI, Martiny AC, Treseder KK, Allison SD, Martiny JB (2018) Decomposition responses to climate depend on microbial community composition. P Natl Acad Sci Usa 115:11994–11999

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  PubMed  Google Scholar 

  • Hadas A, Kautsky L, Goek M, Erman Kara E (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem 36:255–266

    Article  CAS  Google Scholar 

  • Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54:33–45

    Article  CAS  Google Scholar 

  • He XX, Dai SY, Meng L, He MQ, Wang XG, Cai ZC, Zhu B, Zhang JB, Nardi P, Müeller C (2023) Effects of 18 years repeated N fertilizer applications on gross N transformation rates in a subtropical rain-fed purple soil. Appl Soil Ecol 189

  • Hu Y-L, Wu F-P, Zeng D-H, Chang SX (2014) Wheat straw and its biochar had contrasting effects on soil C and N cycling two growing seasons after addition to a black chernozemic soil planted to barley. Biol Fert Soils 50:1291–1299

    Article  CAS  Google Scholar 

  • Huygens D, Boeckx P, Templer P, Paulino L, Van Cleemput O, Oyarzún C, Müller C, Godoy R (2008) Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nat Geosci 1:543–548

    Article  CAS  Google Scholar 

  • Incerti G, Bonanomi G, Giannino F, Rutigliano FA, Piermatteo D, Castaldi S, De Marco A, Fierro A, Fioretto A, Maggi O, Papa S, Persiani AM, Feoli E, De Santo AV, Mazzoleni S (2011) Litter decomposition in Mediterranean ecosystems: modelling the controlling role of climatic conditions and litter quality. Appl Soil Ecol 49:148–157

    Article  Google Scholar 

  • Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59:341–363

    Article  CAS  PubMed  Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315

    Article  CAS  Google Scholar 

  • Jin Z, Shah T, Zhang L, Liu H, Peng S, Nie L (2020) Effect of straw returning on soil organic carbon in rice–wheat rotation system: a review. Food Energy Secur 9:e200

    Article  Google Scholar 

  • Johnson DW (1992) Nitrogen retention in forest soils. J Environ Qual 21:1–12

    Article  Google Scholar 

  • Jones DL, Cooledge EC, Hoyle FC, Griffiths RI, Murphy DV (2019) pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities. Soil Biol Biochem 138:107584

    Article  CAS  Google Scholar 

  • Killham K (1990) Nitrification in coniferous forest soils. Plant Soil 128:31–44

    Article  CAS  Google Scholar 

  • Kozjek K, Manoharan L, Urich T, Ahrén D, Hedlund K (2023) Microbial gene activity in straw residue amendments reveals carbon sequestration mechanisms in agricultural soils. Soil Biol Biochem 179

  • Krishna MP, Mohan M (2017) Litter decomposition in forest ecosystems: a review. Energy Ecol Environ 2:236–249

    Article  Google Scholar 

  • Kumar M, Kundu DK, Ghorai AK, Mitra S, Singh SR (2018) Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in Inceptisols of eastern Indo-Gangetic Plain. Soil till Res 178:108–117

    Article  Google Scholar 

  • Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669

    Article  CAS  PubMed  Google Scholar 

  • Li XG, Jia B, Lv J, Ma Q, Kuzyakov Y, Li F-m (2017) Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biol Biochem 112:47–55

    Article  CAS  Google Scholar 

  • Li Y, Chapman SJ, Nicol GW, Yao H (2018) Nitrification and nitrifiers in acidic soils. Soil Biol Biochem 116:290–301

    Article  CAS  Google Scholar 

  • Li Z, Reichel R, Xu Z, Vereecken H, Brüggemann N (2021) Return of crop residues to arable land stimulates N2O emission but mitigates NO3 leaching: a meta-analysis. Agron Sustain Dev

  • Li HC, van den Bulcke J, Kibleur P, Mendoza O, De Neve S, Sleutel S (2022) Soil textural control on moisture distribution at the microscale and its effect on added particulate organic matter mineralization. Soil Biol Biochem 172

  • Li ZK, Shen Y, Zhang WY, Zhang H, Liu LJ, Wang ZQ, Gu JF, Yang JC (2023) Effects of long-term straw returning on rice yield and soil properties and bacterial community in a rice-wheat rotation system. Field Crop Res 291

  • Liski J, Palosuo T, Peltoniemi M, Sievänen R (2005) Carbon and decomposition model Yasso for forest soils. Ecol Model 189:168–182

    Article  CAS  Google Scholar 

  • Liu C, Wang K, Meng S, Zheng X, Zhou Z, Han S, Chen D, Yang Z (2011) Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat–maize rotation field in northern China. Agr Ecosyst Environ 140:226–233

    Article  CAS  Google Scholar 

  • Liu H, Ding Y, Zhang Q, Liu X, Xu J, Li Y, Di H (2019) Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils. Plant Soil 445:39–53

    Article  CAS  Google Scholar 

  • Liu B, Wang X, Ma L, Chadwick D, Chen X (2021a) Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: a meta-analysis. Environ Pollut 269:116143

    Article  CAS  PubMed  Google Scholar 

  • Liu HY, Hu HW, Huang X, Ge TD, Li YF, Zhu ZK, Liu XM, Tan WF, Jia ZJ, Di HJ, Xu JM, Li Y (2021b) Canonical ammonia oxidizers, rather than comammox Nitrospira, dominated autotrophic nitrification during the mineralization of organic substances in two paddy soils. Soil Biol Biochem 156

  • Liu J, Jiang B, Shen J, Zhu X, Yi W, Li Y, Wu J (2021c) Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agr Ecosyst Environ 311:107286

    Article  CAS  Google Scholar 

  • Liu MH, Feng FJ, Li LJ, Du XR, Zhang ZY, Ji XM (2023a) Possibility of exogenous organic carbon input to increase global soil nitrogen supply potential: a meta-analysis. Soil till Res 232

  • Liu ZQ, Xu N, Cao T, An ZF, Yang X, He TY, Yang TT, Meng J (2023b) Maize straw is more effective than maize straw biochar at improving soil N availability and gross N transformation rate. Eur J Soil Sci 74

  • Lu W, Zhang H, Min J, Shi W (2015) Dissimilatory nitrate reduction to ammonium in a soil under greenhouse vegetable cultivation as affected by organic amendments. J Soil Sediment 15:1169–1177

    Article  CAS  Google Scholar 

  • Ma Y, Shen Y, Liu Y (2020) State of the art of straw treatment technology: challenges and solutions forward. Bioresource Technol 313:123656

    Article  CAS  Google Scholar 

  • Martens DA (2001) Nitrogen cycling under different soil management systems

  • Mehnaz KR, Corneo PE, Keitel C, Dijkstra FA (2019) Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil. Soil Biol Biochem 134:175–186

    Article  CAS  Google Scholar 

  • Meidute S, Demoling F, Bååth E (2008) Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biol Biochem 40:2334–2343

    Article  CAS  Google Scholar 

  • Meng XT, Zhang XC, Li YN, Jiao YP, Fan LC, Jiang YJ, Qu CY, Filimonenko E, Jiang YH, Tian XH, Shi JL, Kuzyakov Y (2024) Nitrogen fertilizer builds soil organic carbon under straw return mainly via microbial necromass formation. Soil Biol Biochem 188

  • Miller MN, Zebarth BJ, Dandie CE, Burton DL, Goyer C, Trevors JT (2008) Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol Biochem 40:2553–2562

    Article  CAS  Google Scholar 

  • Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2012) Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology 93:770–782

    Article  PubMed  Google Scholar 

  • Moritsuka N, Yanai J, Mori K, Kosaki T (2004) Biotic and abiotic processes of nitrogen immobilization in the soil-residue interface. Soil Biol Biochem 36:1141–1148

    Article  CAS  Google Scholar 

  • Murphy RP, Montes-Molina JA, Govaerts B, Six J, van Kessel C, Fonte SJ (2016) Crop residue retention enhances soil properties and nitrogen cycling in smallholder maize systems of Chiapas, Mexico. Appl Soil Ecol 103:110–116

    Article  Google Scholar 

  • Mutegi JK, Munkholm LJ, Petersen BM, Hansen EM, Petersen SO (2010) Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy. Soil Biol Biochem 42:1701–1711

    Article  CAS  Google Scholar 

  • Myrold DD, Bottomley PJ (2008) Nitrogen mineralization and immobilization. In: Schepers JS, WR Raun (ed) Nitrogen in agricultural systems. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI

    Google Scholar 

  • Na M, Hicks LC, Zhang YD, Shahbaz M, Sun HL, Rousk J (2022) Semi-continuous C supply reveals that priming due to N-mining is driven by microbial growth demands in temperate forest plantations. Soil Biol Biochem 173

  • Niu S, Classen AT, Dukes JS, Kardol P, Liu L, Luo Y, Rustad L, Sun J, Tang J, Templer PH, Thomas RQ, Tian D, Vicca S, Wang Y-P, Xia J, Zaehle S (2016) Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecol Lett 19:697–709

    Article  PubMed  Google Scholar 

  • Norton JM (2008) Nitrification in agricultural soils. In: Schepers JS, WR Raun (ed) Nitrogen in agricultural systems. American Society of Agronomy. Crop Science Society of America, Soil Science Society of America, Madison, WI

    Google Scholar 

  • Ntonta S, Mathew I, Zengeni R, Muchaonyerwa P, Chaplot V (2022) Crop residues differ in their decomposition dynamics: review of available data from world literature. Geoderma 419

  • Ouyang Y, Evans SE, Friesen ML, Tiemann LK (2018) Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biol Biochem 127:71–78

    Article  CAS  Google Scholar 

  • Pandey A, Suter H, He J-Z, Hu H-W, Chen D (2019) Dissimilatory nitrate reduction to ammonium dominates nitrate reduction in long-term low nitrogen fertilized rice paddies. Soil Biol Biochem 131:149–156

    Article  CAS  Google Scholar 

  • Parajuli B, Ye RZ, Szogi A (2022) Mineral N suppressed priming effect while increasing microbial C use efficiency and N2O production in sandy soils under long-term conservation management. Biol Fert Soils 58:903–915

    Article  CAS  Google Scholar 

  • Penner JF, Frank DA (2019) Litter decomposition in yellowstone grasslands: the roles of large herbivores, litter quality, and climate. Ecosystems 22:929–937

    Article  CAS  Google Scholar 

  • Pittelkow CM, Liang X, Linquist BA, van Groenigen KJ, Lee J, Lundy ME, van Gestel N, Six J, Venterea RT, van Kessel C (2015) Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365–368

    Article  CAS  PubMed  Google Scholar 

  • Putz M, Schleusner P, Rütting T, Hallin S (2018) Relative abundance of denitrifying and DNRA bacteria and their activity determine nitrogen retention or loss in agricultural soil. Soil Biol Biochem 123:97–104

    Article  CAS  Google Scholar 

  • Razanamalala K, Razafimbelo T, Maron P-A, Ranjard L, Chemidlin N, Lelièvre M, Dequiedt S, Ramaroson VH, Marsden C, Becquer T, Trap J, Blanchart E, Bernard L (2018) Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. ISME J 12:451–462

    Article  PubMed  Google Scholar 

  • Robertson G, Groffman P (2007) Nitrogen transformations. In: E Paul (ed) Soil microbiology, ecology, and biochemistry

  • Rütting T, Boeckx P, Müller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:1779–1791

    Article  Google Scholar 

  • San Emeterio L, Canals RM, Herman DJ (2014) Combined effects of labile and recalcitrant carbon on short-term availability of nitrogen in intensified arable soil. Eur J Soil Sci 65:377–385

    Article  CAS  Google Scholar 

  • Scarlett K, Denman S, Clark DR, Forster J, Vanguelova E, Brown N, Whitby C (2021) Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline. ISME J 15:623–635

    Article  CAS  PubMed  Google Scholar 

  • Schleuss P-M, Widdig M, Heintz-Buschart A, Guhr A, Martin S, Kirkman K, Spohn M (2019) Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a mesic grassland in South Africa. Soil Biol Biochem 135:294–303

    Article  CAS  Google Scholar 

  • Seaton FM, George PBL, Lebron I, Jones DL, Creer S, Robinson DA (2020) Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biol Biochem 144:107766

    Article  CAS  Google Scholar 

  • Shindo H, Nishio T (2005) Immobilization and remineralization of N following addition of wheat straw into soil: determination of gross N transformation rates by 15N-ammonium isotope dilution technique. Soil Biol Biochem 37:425–432

    Article  CAS  Google Scholar 

  • Silva-Sánchez A, Soares M, Rousk J (2019) Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality. Soil Biol Biochem 134:25–35

    Article  Google Scholar 

  • Simon J (2002) Enzymology and bioenergetics of respiratory nitrite ammonification. Fems Microbiol Rev 26:285–309

    Article  CAS  PubMed  Google Scholar 

  • Soong JL, Fuchslueger L, Marañon-Jimenez S, Torn MS, Janssens IA, Penuelas J, Richter A (2020) Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biol 26:1953–1961

    Article  Google Scholar 

  • Sun L, Wu Z, Ma Y, Liu Y, Xiong Z (2018) Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China. Atmos Environ 181:97–105

    Article  CAS  Google Scholar 

  • Surey R, Schimpf CM, Sauheitl L, Mueller CW, Rummel PS, Dittert K, Kaiser K, Böttcher J, Mikutta R (2020) Potential denitrification stimulated by water-soluble organic carbon from plant residues during initial decomposition. Soil Biol Biochem 147:107841

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi A, Janz B, Labouriau R, Olesen JE, Butterbach-Bahl K, Petersen SO (2021) Nitrous oxide emissions from red clover and winter wheat residues depend on interacting effects of distribution, soil N availability and moisture level. Plant Soil 466:121–138

    Article  CAS  Google Scholar 

  • Thapa R, Tully KL, Cabrera ML, Dann C, Schomberg HH, Timlin D, Reberg-Horton C, Gaskin J, Davis BW, Mirsky SB (2021) Effects of moisture and temperature on C and N mineralization from surface-applied cover crop residues. Biol Fert Soils 57:485–498

    Article  CAS  Google Scholar 

  • Tian J, He N, Hale L, Niu S, Yu G, Liu Y, Blagodatskaya E, Kuzyakov Y, Gao Q, Zhou J (2018) Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Funct Ecol 32:61–70

    Article  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol Anaer Microbiol 717:179–244

    Google Scholar 

  • Torres-Cañabate P, Davidson EA, Bulygina E, García-Ruiz R, Carreira JA (2008) Abiotic immobilization of nitrate in two soils of relic Abies pinsapo-fir forests under Mediterranean climate. Biogeochemistry 91:1–11

    Article  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  • Verstraete W, Focht DD (1977) Biochemical ecology of nitrification and denitrification. In: Alexander M (ed) Advances in microbial ecology. Springer US, Boston, MA

    Google Scholar 

  • Wang X, Sun B, Mao J, Sui Y, Cao X (2012) Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions. Environ Sci Technol 46:7159–7165

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhu B, Zhang J, Müller C, Cai Z (2015) Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol Biochem 91:222–231

    Article  CAS  Google Scholar 

  • Wang M, Pendall E, Fang C, Li B, Nie M (2018) A global perspective on agroecosystem nitrogen cycles after returning crop residue. Agr Ecosyst Environ 266:49–54

    Article  CAS  Google Scholar 

  • Wang KK, Hu WS, Xu ZY, Xue YH, Zhang Z, Liao SP, Zhang YY, Li XK, Ren T, Cong RH, Lu JW (2022a) Seasonal temporal characteristics of in situ straw decomposition in different types and returning methods. J Soil Sci Plant Nutr 22:4228–4240

    Article  CAS  Google Scholar 

  • Wang Z, Liu ZT, Hu W, Bai H, Ma LJ, Lv XB, Zhou ZG, Meng YL (2022b) Crop residue return improved soil nitrogen availability by increasing amino acid and mineralization under appropriate N fertilization. Land Degrad Dev 33:2197–2207. https://doi.org/10.1002/ldr.4241

    Article  Google Scholar 

  • Wei J, Knicker H, Zhou ZY, Eckhardt KU, Leinweber P, Wissel H, Yuan WP, Brüggemann N (2023) Nitrogen immobilization caused by chemical formation of black- and amide-N in soil. Geoderma 429.

  • Wu D, Senbayram M, Well R, Brüggemann N, Pfeiffer B, Loick N, Stempfhuber B, Dittert K, Bol R (2017) Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification. Soil Biol Biochem 104:197–207

    Article  CAS  Google Scholar 

  • Wu L, Hu R, Tang S, Shaaban M, Zhang W, Shen H, Xu M (2020) Nitrous oxide emissions in response to straw incorporation is regulated by historical fertilization. Environ Pollut 266:115292

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Zhao G, Huang H, Wu Q, Bangura K, Cai T, Sun M, Xue JF, Zhang JJ, Dang Y, Wang SY, Zhou G, Fu J, Yang KJ, Fan TL, Gao ZQ (2023) Optimizing soil and fertilizer management strategy to facilitate sustainable development of wheat production in a semi-arid area: a 12-year in-situ study on the Loess Plateau. Field Crop Res 302

  • Xia L, Lam SK, Wolf B, Kiese R, Chen D, Butterbach-Bahl K (2018) Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Global Change Biol 24:5919–5932

    Article  Google Scholar 

  • Xia Q, Rufty T, Shi W (2020) Soil microbial diversity and composition: links to soil texture and associated properties. Soil Biol Biochem 149:107953

    Article  CAS  Google Scholar 

  • Xia Q, Heitman JL, Shi W (2023a) Soil macroporosity modulates the extent of negative microbial associations during organic substance decomposition. Soil Biol Biochem 187

  • Xia ZQ, Ma Q, Yu WT, Wang YA, Zhu MM, Zhang XH, Gao Y, An SY, Li SL (2023b) The fate of N released from the fixed NH4+ pool in response to different straw application doses. Geoderma 430

  • Xiao K, Xu J, Tang C, Zhang J, Brookes PC (2013) Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments. Soil Biol Biochem 67:70–84

    Article  CAS  Google Scholar 

  • Xiao D, He XY, Wang GH, Xu XC, Hu YJ, Chen XB, Zhang W, Su YRA, Wang KL, Soromotin AV, Alharbi HA, Kuzyakov Y (2022) Network analysis reveals bacterial and fungal keystone taxa involved in straw and soil organic matter mineralization. Appl Soil Ecol 173

  • Xu C, Han X, Zhuge Y, Xiao G, Ni B, Xu X, Meng F (2021) Crop straw incorporation alleviates overall fertilizer-N losses and mitigates N2O emissions per unit applied N from intensively farmed soils: an in situ 15N tracing study. Sci Total Environ 764:142884

    Article  CAS  PubMed  Google Scholar 

  • Yadvinder S, Bijay S, Timsina J (2005) Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Adv Agron 85:269–407

    Article  Google Scholar 

  • Yang L, Zhou J, Zamanian K, Zhang K, Zhao J, Zang HD, Yang YD, Zeng ZH (2022) Peanut straw application rate had a greater effect on decomposition and nitrogen, potassium and phosphorus release than irrigation. Plant Soil

  • Yin SX, Chen D, Chen LM, Edis R (2002) Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils. Soil Biol Biochem 34:1131–1137

    Article  CAS  Google Scholar 

  • Young MD, Ros GH, de Vries W (2021) Impacts of agronomic measures on crop, soil, and environmental indicators: a review and synthesis of meta-analysis. Agr Ecosyst Environ 319:107551

    Article  CAS  Google Scholar 

  • Yuan L, Liu Y, He HB, Zhu TB, Chen X, Zhang XD, Liang C, Xie HT, Zhang JB, Müller C, Zhao X, Yan XY, Lu CY (2022) Effects of long-term no-tillage and maize straw mulching on gross nitrogen transformations in Mollisols of Northeast China. Geoderma 428.

  • Zhang J, Sun W, Zhong W, Cai Z (2014) The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils. Soil Biol Biochem 76:143–148

    Article  CAS  Google Scholar 

  • Zhang Y, Wang J, Dai S, Zhao J, Huang X, Sun Y, Chen J, Cai Z, Zhang J (2019) The effect of C:N ratio on heterotrophic nitrification in acidic soils. Soil Biol Biochem 137:107562

    Article  CAS  Google Scholar 

  • Zhang Y, Zheng X, Guo B, Yu J, Carswell A, Misselbrook T, Zhang J, Müller C, Chen D, Ding H (2020) Mechanisms behind the inhibition of autotrophic nitrification following rice-straw incorporation in a subtropical acid soil. Soil till Res 196:104436

    Article  Google Scholar 

  • Zhang Y, Pan B, Lam SK, Bai E, Hou P, Chen D (2021) Predicting the ratio of Nitrification to immobilization to reflect the potential risk of Nitrogen loss Worldwide. Environ Sci Technol 55:7721–7730

    Article  CAS  PubMed  Google Scholar 

  • Zhang ST, Ren T, Yang XK, Zhou XQ, Li XK, Cong RH, Lu JW (2023a) Biochar return in the rice season and straw mulching in the oilseed rape season achieve high nitrogen fertilizer use efficiency and low greenhouse gas emissions in paddy-upland rotations. Eur J Agron 148

  • Zhang Y, Cai ZC, Zhang JB, Müller C (2023b) The controlling factors and the role of soil heterotrophic nitrification from a global review. Appl Soil Ecol 182

  • Zhao Y, Zhang J, Müller C, Cai Z (2018) Temporal variations of crop residue effects on soil N transformation depend on soil properties as well as residue qualities. Biol Fert Soils 54:659–669

    Article  CAS  Google Scholar 

  • Zhou W, Jones DL, Hu R, Clark IM, Chadwick DR (2020) Crop residue carbon-to-nitrogen ratio regulates denitrifier N2O production post flooding. Biol Fert Soils 56:825–838

    Article  CAS  Google Scholar 

  • Zhou G, Chang D, Gao S, Liang T, Liu R, Cao W (2021) Co-incorporating leguminous green manure and rice straw drives the synergistic release of carbon and nitrogen, increases hydrolase activities, and changes the composition of main microbial groups. Biol Fert Soils 57:547–561

    Article  CAS  Google Scholar 

  • Zhou F, Zhang XC, Ma SC, Li Y, Zhu MT, Zhang W, Li J, Liu X, Hu GQ, Wang XX, He HB, Zhang XD (2023a) Soil microbial necromass regulation of long-term fertilizer N retention influenced by maize stover mulching. Geoderma 433.

  • Zhou R, Chen Z, Ei-Naggar A, Tian LL, Huang CP, Zhang Z, Palansooriya KN, Li YF, Yu B, Chang SX, Cai YJ (2023b) Contrasting effects of rice husk and its biochar on N2O emissions and nitrogen leaching from Lei bamboo soils under subtropical conditions. Biol Fert Soils 59:803–817

    Article  CAS  Google Scholar 

  • Zhuang M, Zhang J, Kong Z, Fleming RM, Zhang C, Zhang Z (2020) Potential environmental benefits of substituting nitrogen and phosphorus fertilizer with usable crop straw in China during 2000–2017. J Clean Prod 267:122125

    Article  CAS  Google Scholar 

Download references

Funding

The present work was financially supported by the National Natural Science Foundation of China (grant numbers 41867017, 41771340, and 31401945); Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution Open Fund (grant number 1412000027); Hainan Province Science and Technology Special Fund (ZDYF2022XDNY211); and Hainan Provincial Natural Science Foundation of China (321RC625).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yansheng Cao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Xie, Y., Zhu, T. et al. Response Patterns of Soil Nitrogen Cycling to Crop Residue Addition: A Review. J Soil Sci Plant Nutr (2024). https://doi.org/10.1007/s42729-024-01769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42729-024-01769-y

Keywords

Navigation