Skip to main content

Advertisement

Log in

Changes in the Abundance and Composition of a Microbial Community Associated with Land Use Change in a Mexican Tropical Rain Forest

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Land use change (LUC) has important effects on the aboveground biota, mainly by altering richness and diversity, as well as ecosystem functioning. However, the effects of LUC on abiotic and biotic soil properties need to be assessed to determine recovery potential when the original vegetation is restored. The Los Tuxtlas tropical rain forest landscape in Veracruz, Mexico, offers a suitable framework for testing this. To assess the effect of LUC on the microbial community of this tropical rain forest landscape, we analyzed the whole-cell fatty acid profile of the microbial community and physicochemical properties of soils from four types of land use: crops, pastures, secondary forest, and primary tropical rain forest for the dry and rainy seasons. Regardless of season, the microbial data grouped according to land use. The composition of the microbial community was correlated with soil pH in the dry season, and with nitrate, soil organic matter, and available phosphorus concentration in the rainy season. Land use affects the abundance of the microbial community as a function of seasonal variation. In comparison with the microbial community in primary and secondary forest, that of crops and pastures was more greatly affected by seasonal variation. In fact, there were no significant differences between the primary forests or among secondary forests of different ages. These results may indicate a capacity for fast recovery (5 years or less) by the microbial community upon forest regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Álvarez SJ, Guevara S (1993) Litterfall dynamics in a Mexican lowland tropical rain forest. Trop Ecol 34:127–142

    Google Scholar 

  • Álvarez-Sánchez J, Becerra J (1996) Leaf decomposition in a Mexican tropical rain forest. Biotropica 28:657–667. https://doi.org/10.2307/2389052

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  • Bååth E (2003) The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microb Ecol 45:373–383. https://doi.org/10.1007/s00248-003-2002-y

    Article  CAS  PubMed  Google Scholar 

  • Baath E, Frostegard A, Fritze H (1992) Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl Environ Microbiol 58:4026–4031

    Article  CAS  Google Scholar 

  • Banerjee S, Helgason B, Wang L, Winsley T, Ferrari BC, Siciliano SD (2016) Legacy effects of soil moisture on microbial community structure and N2O emissions. Soil Biol Biochem 95:40–50. https://doi.org/10.1016/j.soilbio.2015.12.004

    Article  CAS  Google Scholar 

  • Barak P, Jobe BO, Krueger AR, Peterson LA, Laird DA (1997) Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 197:61–69. https://doi.org/10.1023/a:1004297607070

    Article  CAS  Google Scholar 

  • Barois I. et al. (2011) La biodiversidad en el suelo: estudio de caso en la Sierra de Santa Marta (Reserva de la Biosfera Los Tuxtlas) In: Cruz-Angón AC (ed) La biodiversidad en Veracruz: estudio de estado, vol 1. Ambientes terrestres. CONABIO, Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, A.C. México., Verazcruz, México, pp 271-283

  • Bongers F, Popma J, Meave del Castillo JA, Carabias-Lillo MJ (1988) Structure and floristic composition of the lowland rain forest of Los Tuxtlas, Mexico. Vegetatio 74:55–80

    Article  Google Scholar 

  • Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    Article  CAS  Google Scholar 

  • Bossio DA, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow KM, Ball AS, Pretty JN, Osborn AM (2005) Soil microbial community response to land use change in an agricultural landscape of Western Kenya. Microb Ecol 49:50–62. https://doi.org/10.1007/s00248-003-0209-6

    Article  CAS  PubMed  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total organic and available forms of phosphorous in the soils. Soil Sci 59:39–45. https://doi.org/10.1097/00010694-194501000-00006

    Article  CAS  Google Scholar 

  • Bu W, Zang R, Ding Y (2014) Functional diversity increases with species diversity along successional gradient in a secondary tropical lowland rainforest. Trop Ecol 55:393–401

    Google Scholar 

  • Campos CA (2010) Response of soil inorganic nitrogen to land use and topographic position in the Cofre de Perote Volcano (Mexico). Environ Manag 46:213–224. https://doi.org/10.1007/s00267-010-9517-z

    Article  Google Scholar 

  • Cram S, Sommer I, Fernandez P, Galicia L, Barrois C, Barois I (2015) Soil natural capital modification through land use and cover change in a tropical forest landscape: implications for management. J Trop For Sci 27:189–201

    Google Scholar 

  • Dirzo R, García MC (1992) Rates of deforestation in Los-Tuxtlas, a neotropical area in Southeast Mexico. Conserv Biol 6:84–90. https://doi.org/10.1046/j.1523-1739.1992.610084.x

    Article  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob Chang Biol 17:1658–1670. https://doi.org/10.1111/j.1365-2486.2010.02336.x

    Article  Google Scholar 

  • Fernandes MF, Saxena J, Dick RP (2013) Comparison of whole-cell fatty acid (MIDI) or phospholipid fatty acid (PLFA) extractants as biomarkers to profile soil microbial communities. Microb Ecol 66:145–157. https://doi.org/10.1007/s00248-013-0195-2

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. https://doi.org/10.1073/pnas.0507535103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Delgadillo L, Sommer-Cervantes I, Alcalá Martínez JR, Álvarez-Sánchez FJ (1999) Estudio morfogenético de algunos suelos de la región de Los Tuxtlas, Veracruz, México. Revista Mexicana de Ciencias Geológicas 16(1):81–88

  • Flores-López JM (2014) Ganadería a medias en la Sierra de Santa Marta, Veracruz. Estudios Agrarios 57:199–220

    Google Scholar 

  • Flores-Rentería D, Rincón A, Valladares F, Curiel YJ (2016) Agricultural matrix affects differently the alpha and beta structural and functional diversity of soil microbial communities in a fragmented Mediterranean holm oak forest. Soil Biol Biochem 92:79–90. https://doi.org/10.1016/j.soilbio.2015.09.015

    Article  CAS  Google Scholar 

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33. https://doi.org/10.1111/j.1461-0248.2008.01255.x

    Article  PubMed  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65. https://doi.org/10.1007/BF00384433

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625. https://doi.org/10.1016/j.soilbio.2010.11.021

    Article  CAS  Google Scholar 

  • Fuentes T, García JA, Okoth P, Barois I (2009) Socio-economic context of the sampling sites of Tuxtlas region and the biosphere Reserve in Veracruz State, Mexico. In: Barois I, Huising EJ, Okoth P, Trejo D, De Los Santos M (eds) Below-ground biodiversity in Sierra Santa Marta, Los Tuxtlas, Veracruz, México. A.C., Xalapa, México, Instituto de Ecología, pp 49–64

  • Gittleman JL, Kot M (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. Syst Zool 39:227–241. https://doi.org/10.2307/2992183

    Article  Google Scholar 

  • Gryndler M, Larsen J, Hršelová H, Řezáčová V, Gryndlerová H, Kubát J (2005) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 16:159–166. https://doi.org/10.1007/s00572-005-0027-4

    Article  PubMed  Google Scholar 

  • Guevara S., Laborde J., Sánchez-Ríos G. (2004) La deforestación In: Guevara S, Laborde J, Sánchez-Ríos G (eds) Los Tuxtlas. El paisaje de la sierra. Instituto de Ecología, A. C. Unión Europea, Xalapa,

  • Guo X, Chen HYH, Meng M, Biswas SR, Ye L, Zhang J (2016) Effects of land use change on the composition of soil microbial communities in a managed subtropical forest. For Ecol Manag 373:93–99. https://doi.org/10.1016/j.foreco.2016.03.048

    Article  Google Scholar 

  • Gupta VVSR, Germida JJ (2015) Soil aggregation: influence on microbial biomass and implications for biological processes. Soil Biol Biochem 80:A3–A9. https://doi.org/10.1016/j.soilbio.2014.09.002

    Article  CAS  Google Scholar 

  • Haack SK, Garchow H, Odelson DA, Forney LJ, Klug MJ (1994) Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60:2483–2493

    Article  CAS  Google Scholar 

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448:188–U186. https://doi.org/10.1038/nature05947

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x

    Article  PubMed  Google Scholar 

  • Hermans SM, Buckley HL, Case BS, Curran-Cournane F, Taylor M, Lear G (2016) Bacteria as emerging indicators of soil condition. Appl Environ Microbiol 83:e02826–e02816. https://doi.org/10.1128/AEM.02826-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes RF, Kauffman JB, Jaramillo VJ (2000) Ecosystem-scale impacts of deforestation and land use in a humid tropical region of Mexico. Ecol Appl 10:515–527. https://doi.org/10.1890/1051-0761(2000)010[0515:ESIODA]2.0.CO;2

    Article  Google Scholar 

  • Ibarra-Manríquez G, Martínez-Ramos M, Dirzo R, Núñez-Farfán J (1997) La vegetación. In: González-Soriano E, Dirzo R, Vogt RC (eds) Historia Natural de Los Tuxtlas. UNAM-CONABIO, Mexico City, pp 61–82

    Google Scholar 

  • IPCC (2019) Special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Summary for Policymakers. IPCC, Geneva, Switzerland

    Google Scholar 

  • Islam KR, Weil RR (2000) Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agric Ecosyst Environ 79:9–16. https://doi.org/10.1016/S0167-8809(99)00145-0

    Article  Google Scholar 

  • IUSS W. G. W (2015) World Reference Base for Soil Resources 2015 vol 106. International soil classification system for naming soils and creating legends for soil maps, Reports WSR. No. FAO, Rome, Italy

    Google Scholar 

  • Jarrell WM, Armstrong DE, Grigal DF, Kelly EF, Monger CH, Wedin DA (1999) Soil water and temperature status. In: Robertson GP, Coleman DC, Sollins P, Bledsoe CS (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 55–73

    Google Scholar 

  • Jesus DCE, Marsh TL, Tiedje JM, de S Moreira FM (2009) Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J 3:1004–1011. https://doi.org/10.1038/ismej.2009.47

  • Karliński L, Ravnskov S, Kieliszewska-Rokicka B, Larsen J (2007) Fatty acid composition of various ectomycorrhizal fungi and ectomycorrhizas of Norway spruce. Soil Biol Biochem 39:854–866. https://doi.org/10.1016/j.soilbio.2006.10.003

    Article  CAS  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  • Kunhikrishnan A et al (2016) Chapter one - functional relationships of soil acidification, liming, and greenhouse gas flux. In: Sparks DL (ed) Advances in agronomy, vol 139. Academic Press, pp 1–71. https://doi.org/10.1016/bs.agron.2016.05.001

  • Landon JR (1991) Booker tropical soil manual: a handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Booker Agriculture International L. No. XIV. Longman Scientific & Technical; Wiley; Booker/Tate, Harlow, Essex, England; New York;Thame, Oxon, England

  • Larsen J, Bødker L (2001) Interactions between pea root-inhabiting fungi examined using signature fatty acids. New Phytol 149:487–493. https://doi.org/10.1046/j.1469-8137.2001.00049.x

    Article  CAS  Google Scholar 

  • Larsen J, Mansfeld-Giese K, Bødker L (2000) Quantification of Aphanomyces euteiches in pea roots using specific fatty acids. Mycol Res 104:858–864. https://doi.org/10.1017/S0953756299002075

    Article  CAS  Google Scholar 

  • Leal PL, Siqueira JO, Stürmer SL (2013) Switch of tropical Amazon forest to pasture affects taxonomic composition but not species abundance and diversity of arbuscular mycorrhizal fungal community. Appl Soil Ecol 71:72–80. https://doi.org/10.1016/j.apsoil.2013.05.010

    Article  Google Scholar 

  • Liang C, Jesus E, d. C, Duncan DS, Jackson RD, Tiedje JM, Balser TC (2012) Soil microbial communities under model biofuel cropping systems in southern Wisconsin, USA: impact of crop species and soil properties. Appl Soil Ecol 54:24–31. https://doi.org/10.1016/j.apsoil.2011.11.015

    Article  Google Scholar 

  • Lupwayi NZ, Larney FJ, Blackshaw RE, Kanashiro DA, Pearson DC (2017) Phospholipid fatty acid biomarkers show positive soil microbial community responses to conservation soil management of irrigated crop rotations. Soil Tillage Res 168:1–10. https://doi.org/10.1016/j.still.2016.12.003

    Article  Google Scholar 

  • Maharjan M, Sanaullah M, Razavi BS, Kuzyakov Y (2017) Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Appl Soil Ecol 113:22–28. https://doi.org/10.1016/j.apsoil.2017.01.008

    Article  Google Scholar 

  • Martínez-Sánchez JL (2005) Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil. Rev Biol Trop 53:353–359

    Article  Google Scholar 

  • Martínez-Sánchez JL, Sánchez BS (2003) The effect of time of use of tropical pastures on soil fertility and cattle productivity. Ecotropicos 16:17–26

    Google Scholar 

  • Maynard DG, Kalra YP (1993) Nitrate and exchangeable ammonium nitrogen. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, pp 25–38

    Google Scholar 

  • Miranda F, Hernández-X E (1963) Los tipos de vegetación de México y su clasificación. Bol Soc Bot Méx 29:20–179

    Google Scholar 

  • Mueller RC, Rodrigues JLM, Nüsslein K, Bohannan BJM (2016) Land use change in the Amazon rain forest favours generalist fungi. Funct Ecol 30:1845–1853. https://doi.org/10.1111/1365-2435.12651

    Article  Google Scholar 

  • NOM-021-RECNAT-2000 (2002) Especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación, México

    Google Scholar 

  • Nsabimana D, Haynes RJ, Wallis FM (2004) Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Appl Soil Ecol 26:81–92. https://doi.org/10.1016/j.apsoil.2003.12.005

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824. https://doi.org/10.1128/aem.69.5.2816-2824.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksanen J et al (2013) Vegan: community ecology package. http://CRAN.R-project.org/package=vegan. Accessed 20 Feb 2019

  • Olsson PA, Bååth E, Jakobsen I, Söderström B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99:623–629. https://doi.org/10.1016/S0953-7562(09)80723-5

    Article  CAS  Google Scholar 

  • Poosakkannu A, Nissinen R, Männistö M, Kytöviita M-M (2017) Microbial community composition but not diversity changes along succession in arctic sand dunes. Environ Microbiol 19:698–709. https://doi.org/10.1111/1462-2920.13599

    Article  CAS  PubMed  Google Scholar 

  • Powers JS (2004) Changes in soil carbon and nitrogen after contrasting land-use transitions in northeastern Costa Rica. Ecosystems 7:134–146. https://doi.org/10.1007/s10021-003-0123-2

    Article  CAS  Google Scholar 

  • Ravnskov S, Cabral C, Larsen J (2020) Mycorrhiza induced tolerance in Cucumis sativus against root rot caused by Pythium ultimum depends on fungal species in the arbuscular mycorrhizal symbiosis. Biol Control 141:104133. https://doi.org/10.1016/j.biocontrol.2019.104133

    Article  CAS  Google Scholar 

  • R-Core-Team (2017) R: a language and environment for statistical computing, 3.4.0 edn., Vienna, Austria

  • Reyes HA, Ferreira PFA, Silva LC, da Costa MG, Nobre CP, Gehring C (2019) Arbuscular mycorrhizal fungi along secondary forest succession at the eastern periphery of Amazonia: seasonal variability and impacts of soil fertility. Appl Soil Ecol 136:1–10. https://doi.org/10.1016/j.apsoil.2018.12.013

    Article  Google Scholar 

  • Riah-Anglet W, Trinsoutrot-Gattin I, Martin-Laurent F, Laroche-Ajzenberg E, Norini M-P, Latour X, Laval K (2015) Soil microbial community structure and function relationships: a heat stress experiment. Appl Soil Ecol 86:121–130. https://doi.org/10.1016/j.apsoil.2014.10.001

    Article  Google Scholar 

  • Rodrigues JLM et al (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci 110:988–993. https://doi.org/10.1073/pnas.1220608110

    Article  PubMed  Google Scholar 

  • SAGARPA (2009) Coeficientes de agostadero por entidad (hectárea por unidad animal). On line: http://aplicaciones.semarnat.gob.mx/estadisticas/compendio2010/10.100.13.5_8080/ibi_apps/WFServlet77fe.html. Accessed 29 Nov 2019

  • Sánchez GR, Álvarez-Sánchez J (1995) Litterfall in primary and secondary tropical forests of Mexico. Trop Ecol 36:191–201

    Google Scholar 

  • Sasser M (1990) Identification of bacteria through fatty acid analysis. In: Klement Z, Rudolph K, Sands DC (eds) Methods in Phytobacteriology. Akademiai Kiado, Budapest, pp 199–203

    Google Scholar 

  • Smith AP, Marín-Spiotta E, de Graaff MA, Balser TC (2014) Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biol Biochem 77:292–303. https://doi.org/10.1016/j.soilbio.2014.05.030

    Article  CAS  Google Scholar 

  • Smith AP, Marín-Spiotta E, Balser T (2015) Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: a multiyear study. Glob Chang Biol 21:3532–3547. https://doi.org/10.1111/gcb.12947

    Article  PubMed  Google Scholar 

  • Soto M, Gama L (1997) Climas. In: González-Soriano E, Dirzo R, Vogt R (eds) Historia Natural de los Tuxtlas. Instituto de Biología, Universidad Nacional Autónoma de México, México, D.F., pp 7–23

    Google Scholar 

  • Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F (2008) Arbuscular mycorrhizal fungal communities in sub-Saharan savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18:181–195. https://doi.org/10.1007/s00572-008-0171-8

    Article  PubMed  Google Scholar 

  • Trujillo-Narcía A, Rivera-Cruz MC, Magaña-Aquino M, Trujillo-Rivera EA (2019) The burning of sugarcane plantation in the tropics modifies the microbial and enzymatic processes in soil and rhizosphere. J Soil Sci Plant Nutr 19:906–919. https://doi.org/10.1007/s42729-019-00089-w

    Article  CAS  Google Scholar 

  • Truong THH, Marschner P (2018) Addition of residues with different C/N ratio in soil over time individually or as mixes - effect on nutrient availability and microbial biomass depends on amendment rate and frequency. J Soil Sci Plant Nutr 18:1157–1172

    CAS  Google Scholar 

  • Varela L et al (2009) Land use and diversity of arbuscular mycorrhizal fungi in Mexican tropical ecosystems: preliminary results. In: Barois I, Huising EJ, Okoth P, Trejo D, De Los SM (eds) Below-ground biodiversity in Sierra Santa Marta, Los Tuxtlas, Veracruz, México. Instituto de Ecología, A.C., Xalapa, Veracruz, México, pp 99–112

    Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A:1–5. https://doi.org/10.1073/pnas.1320054111

  • Wei L, Hai-Zhou H, Zhi-Nan Z, Gao-Lin W (2011) Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow. J Soil Sci Plant Nutr 11:27–39

    Article  Google Scholar 

  • Xiang D, Verbruggen E, Hu Y, Veresoglou SD, Rillig MC, Zhou W, Xu T, Li H, Hao Z, Chen Y, Chen B (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China. New Phytol 204:968–978. https://doi.org/10.1111/nph.12961

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Tian J, Fang H, Gao Y, Xu M, Lou Y, Zhou B, Kuzyakov Y (2019) Functional soil organic matter fractions, microbial community, and enzyme activities in a mollisol under 35 years manure and mineral fertilization. J Soil Sci Plant Nutr 19:430–439. https://doi.org/10.1007/s42729-019-00047-6

    Article  CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129. https://doi.org/10.1007/s003740050533

    Article  CAS  Google Scholar 

  • Zhou Z, Wang C, Jiang L, Luo Y (2017) Trends in soil microbial communities during secondary succession. Soil Biol Biochem 115:92–99. https://doi.org/10.1016/j.soilbio.2017.08.014

    Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Smith GM (2007) Principal coordinate analysis and non-metric multidimensional scaling. In: Analysing ecological data. Statistics for Biology and Health. Springer Science, NY, USA, pp 259–264

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Beatriz Zuñiga, Manuel Hernández, América Baleón, and Yesenia Flores for their help with sample preparation; Tsiri Díaz, Yola García, and Netzahualcóyotl Barrón for their technical support with the fatty acid analyses; and Isaac Acevedo Rojas and Guadalupe Barajas for their help with the site maps and soil property statistical analyses. We are grateful to Juliana Padilla who did the soil laboratory analyses and to Bianca Delfosse for editing the English version of the manuscript.

Funding

Financial support was provided by PAPIIT-UNAM (IN-116814). DMR was awarded an M.Sc. scholarship by CONACyT (Num. 432309). DYF was awarded a Post-doctoral fellowship by DGAPA-UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Álvarez-Sánchez.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 1059 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Rentería, D., Sánchez-Gallén, I., Morales-Rojas, D. et al. Changes in the Abundance and Composition of a Microbial Community Associated with Land Use Change in a Mexican Tropical Rain Forest. J Soil Sci Plant Nutr 20, 1144–1155 (2020). https://doi.org/10.1007/s42729-020-00200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-020-00200-6

Keywords

Navigation