Skip to main content

Advertisement

Log in

Effects of Phosphorus Fertilizer Solubility on Pastures Yield and Quality in Andisols

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Phosphate rock (PR) and triple superphosphate (TSP) are options for phosphorus (P) fertilization of crop and pasture production systems. However, to our knowledge, no studies have compared P sources with different solubilities in field trials to date. The aim of this study was to compare the effect of PR and TSP on forage yield, P uptake and nutritive quality of pastures growing in Andisols. Three experiments were conducted in southern Chile, analysing the factorial combination of two P sources (PR and TSP) and four P rates (0–328 kg P ha−1). Results showed that cumulative dry matter production in year 1, year 2 and total was significantly (p ≤ 0.05) affected by P dose, time of cut and the interaction of both variables, indicating that PR is as effective as TSP in acid soils. The treatments did not show significant differences among themselves (p ≥ 0.05) in foliar P concentration, P uptake, P apparent recovery efficiency and nutritive quality of pastures evaluated. The highest P apparent recovery efficiency was obtained with 22 kg P ha−1 and 44 kg P ha−1 independent of the phosphate fertilizer applied. A P demand factor of 2.7–3.1 kg P Mg−1 dry matter was estimated. All these information will be useful to improve P fertilization managements of pastures growing in Andisols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achat DL, Morel C, Bakker MR, Augusto L, Pellerin S, Gallet-Budynek A, Gonzalez M (2010) Assessing turnover of microbial biomass phosphorus: combination of an isotopic dilution method with a mass balance model. Soil Biol Biochem 42:2231–2240

    Article  CAS  Google Scholar 

  • Anrique R, Fuchlocher R, Iraira S, Saldaña R (2008) In: FIA (ed) Composición de alimentos para el ganado bovino. Universidad Austral de, Chile 87p

    Google Scholar 

  • Bai Z, Li H, Yang X, Zhou B, Shi X, Wang B, Li D, Shen J, Chen Q, Qin W, Oenema O, Zhang F (2013) The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 372:27–37

    Article  CAS  Google Scholar 

  • Balemi T, Negisho K (2012) Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J Soil Sci Plant Nutr 12:547–561

    Article  Google Scholar 

  • Barrow NJ (1999) The four laws of soil chemistry: the Leeper lecture 1998. Aust J Soil Res 37:787–829

    Article  CAS  Google Scholar 

  • Besoaín E, Sadzawka MA (1999) 2. Fenómenos de retención de fósforo en los suelos volcánicos y sus consecuencias. In: Besoaín E, Rojas C, Montenegro A (eds) Las rocas fosfóricas y sus posibilidades de uso agrícola en Chile. Colección Libros INIA N° 2, Santiago, pp 23–40

  • Besoaín E, Montenegro A, Rojas C (1999) 8 Discusión y conclusiones. In: Besoaín E, Rojas C, Montenegro A (eds) Las rocas fosfóricas y sus posibilidades de uso agrícola en Chile. Colección Libros INIA N° 2, Santiago, pp 311–328

  • Bolan NS, White R, Hedley M (1990) A review of the use of phosphate rocks as fertilizers for direct application in Australia and New Zealand. Aust J Exp Agric 30:297–313

    Article  CAS  Google Scholar 

  • Bolan NS, Currie L, Baskaran S (1996) Assessment of the influence of phosphate fertilizers on the microbial activity of pasture soils. Biol Fertil Soils 21:284–292

    Article  Google Scholar 

  • Bolland MDA (1993) Summary of research on soil testing for rock phosphate fertilizers in Western Australia. Fertil Res 35:83–91

    Article  CAS  Google Scholar 

  • Cabeza R, Steingrobe B, Claassen N (2019) Phosphrus fractionation in soils fertilized with reclycled phosphorus products. J Soil Sci Plant Nutr 19(3):611–619

    Article  CAS  Google Scholar 

  • Chen C, Condron L, Sinaj S, Davis M, Sherlock R, Frossard E (2003) Effects of plant species on phosphorus availability in a range of grassland soils. Plant Soil 256:115–130

    Article  CAS  Google Scholar 

  • Chien SH (2001) Factors affecting the agronomic effectiveness of phosphate rock: a general review. In: Rajan SSS, Chien SH (eds) Direct Application of Phosphate Rock and Related Appropriate Technology – Latest Developments and Practical Experiences Proceedings of an International Meeting, Kuala Lumpur, Malaysia. International Fertilizer Development Center, Muscle Shoals, pp 50–62

    Google Scholar 

  • Chien SH, Prochnow LI, Cantarella H (2009) Recent developments of fertilizer production and use to increase nutrient efficiency and minimize environmental impacts. Adv Agron 102:261–316

    Google Scholar 

  • CIREN, Centro de Investigaciones de Recursos Naturales (2003) Estudio agrológico X Región. Descripciones de suelos, materiales y símbolos. Vol I. Santiago, Chile. 225p

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Chang 19:292–305

    Article  Google Scholar 

  • Cordell D, Neset TS, Prior T (2012) The phosphorus mass balance: identifying “hotspots” in the food system as a roadmap to phosphorus security. Curr Opin Biotechnol 23:839–845

    Article  CAS  Google Scholar 

  • Demanet R, Mora ML, Herrera MÁ, Miranda H, Barea JM (2015) Seasonal variation of the productivity and quality of permanent pastures in Andisols of temperate regions. J Soil Sci Plant Nutr 15:111–128

    Google Scholar 

  • Elser J, Bennett E (2011) Phosphorus cycle: a broken biogeochemical cycle. Nature. 478:29–31

    Article  CAS  Google Scholar 

  • Garrido O, Mann E (1981) Composición química, digestibilidad y valor energético de una pradera permanente a través del año. Tesis Ingeniero Agrónomo, Universidad Austral de Chile, Facultad de Ciencias Agrarias, Valdivia 63 p

    Google Scholar 

  • Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus: its efficient use in agriculture. Adv Agron 123:177–228. https://doi.org/10.1016/B978-0-12-420225-2.00005-4

    Article  CAS  Google Scholar 

  • Karlovsky J (1981) Cycling of nutrients and their utilization by plants in agricultural ecosystems. Agro-Ecosystems. 7:127–144

    Article  Google Scholar 

  • Karlovsky J (1982) The balance sheet approach to determination of phosphate maintenance requirements. Fertil Res 3:111–125

    Article  Google Scholar 

  • Khan A, Lu G, Zhang H, Wang R, Lv F, Xu J, Yang X, Zhang S (2019) Land use changes impact distribution of phosphorus in deep soil profile. J Soil Sci Plant Nutr 19(3):565–573

    Article  CAS  Google Scholar 

  • Liebisch F, Bünemann EK, Huguenin-Elie O, Jeangros B, Frossard E, Oberson A (2013) Plant phosphorus nutrition indicators evaluated in agricultural grasslands managed at different intensities. Eur J Agron 44:67–77

    Article  CAS  Google Scholar 

  • Loaiza PA, Balocchi O, Bertrand A (2016) Carbohydrate and crude protein fractions in perennial ryegrass as affected by defoliation frequency and nitrogen application rate. Grass Forage Sci 72:556–567

    Article  Google Scholar 

  • Lynch J (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Macklon AES, Grayston SJ, Shand CA, Sim A, Sellars S, Ord BG (1997) Uptake and transport of phosphorus by Agrostis capillaris seedlings from rapidly hydrolysed organic sources extracted from P32-labelled bacterial cultures. Plant Soil 190:163–167

    Article  CAS  Google Scholar 

  • Manske G, Ortiz-Monasterio J, van Ginkel M, González R, Fischer R, Rajaram S, Vlek P (2001) Importance of uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. Eur J Agron 14:261–274

    Article  CAS  Google Scholar 

  • NCR, National Research Council (2001) Nutrients composition of feeds. In: Nutrient requirement of dairy cattle. Subcommittee on dairy cattle nutrition. 7th edition. National Academy Press, Washington 382p

    Google Scholar 

  • Oberson A, Joner EJ (2005) Microbial turnover of phosphorus in soil. In: ‘Organic phosphorus in the environment’. (Eds BL turner, E Frossard, DS Baldwin). CABI Publishing, Wallingford, pp 133–164

    Google Scholar 

  • Perrott KW, Sarathchandra SU, Dow BW (1992) Seasonal and fertilizer effects on the organic-cycle and microbial biomass in a hill country soil under pasture. Aust J Soil Res 30:383–394

    Article  CAS  Google Scholar 

  • Rajan SSS, Watkinson JH, Sinclair AG (1996) Phosphate rocks for direct application to soils. Adv Agron 57:77–159

    Article  CAS  Google Scholar 

  • Rowarth JS, Gillingham AG, Tillman RW, Syers JK (1992) Effect of phosphate fertiliser addition and land slope on soil phosphate fractions. N Z J Agric Res 35:321–327

    Article  CAS  Google Scholar 

  • Sadzawka A, Carrasco MA, Grez R, Mora ML, Flores H, Reaman A (2006) Métodos de análisis recomendados para los suelos chilenos. Instituto de Investigaciones Agropecuarias. Centro Regional de Investigación La Platina. Serie Actas N° 34. 164p

  • Sadzawka A, Carrasco MA, Demanet R, Flores H, Grez R, Mora ML, Neaman A (2007) Métodos de análisis de tejidos vegetales. Instituto de Investigaciones Agropecuarias. Centro Regional de Investigación La Platina. Serie Actas N° 40. 139p

  • Saggar S, Hedley M, White R, Gregg P, Perrott K, Cornforth I (1993) Assessment of the relative agronomic effectiveness of phosphate rocks under glasshouse conditions. Fertil Res 34:141–151

    Article  CAS  Google Scholar 

  • Sandaña P, Lobos I, Pavez P, Moscoso C (2019) Validation of a critical nitrogen dilution curve for hybrid ryegrasses. Grass Forage Sci 74:370–380. https://doi.org/10.1111/gfs.12405

    Article  Google Scholar 

  • Sposito G (1992) Characterization of particle surface charge. In: Buffle J, van Leeuwen H (eds) Environmental Particles. Environmental Analytical and Physical, pp 291–314

    Google Scholar 

  • SPSS (2001) SPSS Base 11.0 users’ guide, 1st edn. Prentice Hall, Chicago

    Google Scholar 

  • StatSoft Inc (2004) Electronic statistics textbook, Tulsa

  • Syers JK, Johnston AE, Curtin D (2008) Efficiency of soil and fertilizer phosphorus. FAO fertilizer and plant nutrition. Bulletin N° 18. Food and agriculture Organization of the United Nations. 107p

  • Systat Software Inc (2014) Graphing and statistical analysis, San Jose

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science. 292:281–284

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature. 418:671–677

    Article  CAS  Google Scholar 

  • Valle SR, Carrasco J, Pinochet D, Soto P, Donald RM (2015) Spatial distribution assessment of extractable Al, (NaF) pH and phosphate retention as tests to differentiate among volcanic soils. Catena. 127:17–25

    Article  CAS  Google Scholar 

  • Vistoso E, Theng BKG, Bolan NS, Parfitt R, Mora ML (2012) Competitive sorption of molybdate and phosphate in Andisols. J Soil Sci Plant Nutr 12:59–72

    Article  Google Scholar 

  • Whitehead DC (2000) Nutrient elements in grassland: soil–plant–animal relationships. CABI Publishing, Wallingford 369p

    Book  Google Scholar 

Download references

Acknowledgements

We also thank Annette Fahrenkrog Ph.D. for help with the English language.

Funding

The Gobierno Regional and Secretaría Regional Ministerial de Agricultura de la Región de Los Lagos provided financial support, and Instituto de Investigaciones Agropecuarias (INIA) supported this research. This study was funded by Convenio de Cooperación “Desarrollo del Programa de Mejoramiento de la Capacidad Productiva de las Praderas” (BIP 30125789-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Vistoso.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vistoso, E., Iraira, S. & Sandaña, P. Effects of Phosphorus Fertilizer Solubility on Pastures Yield and Quality in Andisols. J Soil Sci Plant Nutr 20, 637–647 (2020). https://doi.org/10.1007/s42729-019-00152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-019-00152-6

Keywords

Navigation