Skip to main content
Log in

Effects of some insecticides on the biological parameters of Tetranychus urticae Koch (Acari: Tetranychidae)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Tetranychus urticae Koch. (Acari: Tetranychidae) is one of the most important major pests that damage both agricultural production areas and many other commercially grown plants across the world. Agricultural producers generally prefer pesticides to control pests. However, the pesticides are sometimes used without consideration for their effects on non-target organisms. In addition, in some cases, the dose adjustment for the pesticides prior to application is incorrectly applied. In this case, the associated overdose or low dose may lead to changes in the biological parameters of the target and the non-target organisms. In this study, we investigated the effect of imidacloprid, thiacloprid, deltamethrin and cypermethrin on reproduction parameters and lifespan of T. urticae using their field recommended dose (FRD) and half of the field recommended dose (FRD/2). Insecticides and pure water (control) were applied to the larvae of the T. urticae found on the leaves on the wet cotton of the Petri dish by spray towers. Compared to the control, the developmental times for the larvae on test unit treated with deltamethrin and cypermethrin at FRD and FRD/2 were considerably longer. The developmental period of larvae treated with thiacloprid at the FRD, however, was significantly shorter than the control (P < 0.05). The duration of adults preoviposition from thiacloprid administered at the FRD/2 was significantly increased compared to the control (P < 0.05). The lifespan (4.89 days) and the duration of oviposition period (5.05 days) of adults obtained from larvae treated with imidacloprid at FRD was significantly shorter compared to the control (P < 0.05). Thus, thiacloprid at the FRD/2 significantly increased the preoviposition time (1.10 days) compared to the control (0.50 days) (P < 0.05). Deltamethrin at the FRD and FRD/2 significantly increased the preoviposition duration compared to control (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alinejad M, Kheradmand K, Fathipour Y (2015) Sublethal effects of fenazaquin on biological performance of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae): application of age-stage, two-sex life tables. Acarina 23(2):172–180

    Google Scholar 

  • Arias M, Bonetto C, Mugni H (2020) Sublethal effects on Simocephalus vetulus (Cladocera: Daphnidae) of pulse exposures of cypermethrin. Ecotoxicol Environ Saf 196:110546. https://doi.org/10.1016/j.ecoenv.2020.110546

    Article  CAS  PubMed  Google Scholar 

  • Balci MH, İnanici MA, Ay R (2020) Laboratuvar Kosullarinda Tetranychus urticae Koch ve Avci Akar Phytoseiulus persimilis Athias-Henriot’e Bazi Pestisitlerin Etkilerinin Incelenmesi. J Tekirdag Agricultural Fac 17(2):172–179. https://doi.org/10.33462/jotaf.598391

    Article  Google Scholar 

  • Barati R, Hejazi MJ (2015) Reproductive parameters of Tetranychus urticae (Acari: Tetranychidae) affected by neonicotinoid insecticides. Exp Appl Acarol 66(4):481–489. https://doi.org/10.1007/s10493-015-9910-7

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Yang H, Li J, Wang C, Li C, Gao Y (2019) Sublethal effects of imidacloprid on the population development of western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). Insects 10(1). https://doi.org/10.3390/insects10010003

  • Cavalcanti SCH, Niculau EDS, Blank AF, Câmara CAG, Araújo IN, Alves PB (2010) Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresource Technology, 101(2), pp.829–832 doi.10.1016/j.biortech.2009.08.053

  • Chen XD, Seo M, Ebert TA, Ashfaq M, Qin W, Stelinski L (2020) Hormesis in the brown citrus aphid, Toxoptera citricida (Kirkaldy)(Hemiptera: Aphididae) exposed to sublethal doses of imidacloprid. Fla Entomol 103(3):337–343

    Article  Google Scholar 

  • Cohen E (2006) Pesticide-mediated homeostatic modulation in arthropods. Pestic Biochem Physiol 85(1):21–27. https://doi.org/10.1016/j.pestbp.2005.09.002

    Article  CAS  Google Scholar 

  • Çobanoğlu S, Alzoubi S (2013) Effects of soft soap and abamectin on the two spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) and predatory mite Phytoseiulus persimilis AH (Acari: Phytoseiidae) under laboratory conditions. Turkish J Entomol 37(1):31–38

    Google Scholar 

  • de França SM, Breda MO, Barbosa DRS, Araujo AMN, Guedes CAWA (2017) The sublethal effects of insecticides in insects. Biol control pest vector insects 23–39. https://doi.org/10.5772/66461

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annual Rev Entomol 52:81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440

    Article  CAS  Google Scholar 

  • Devine GJ, Barber M, Denholm I (2001) Incidence and inheritance of resistance to METI-acaricides in european strains of the two‐spotted spider mite (Tetranychus urticae)(Acari: Tetranychidae). Pest Manage Science: Former Pesticide Sci 57(5):443–448. https://doi.org/10.1002/ps.307

    Article  CAS  Google Scholar 

  • Duke SO (2014) Hormesis with pesticides. Pest Manag Sci 70(689). 10-1002

  • Golmohammadi G, Torshizi HRR, Vafaei-Shooshtari R, Faravardeh L, Rafaei-Karehroudi Z (2021) Lethal and sublethal effects of three insecticides on first instar larvae of green lacewing, Chrysoperla carnea, Stephens. Int J Trop Insect Sci 1–9. https://doi.org/10.1007/s42690-020-00407-1

  • Grandjean P (2016) Paracelsus revisited: the dose concept in a complex world. Basic Clin Pharmacol Toxicol 119(2):126–132. https://doi.org/10.1111/bcpt.12622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, Osborne EJ, Dermauw W, Ngoc PCT, Ortego F, Hernández-Crespo P (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479(7374):487–492. https://doi.org/10.1038/nature10640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedes RNC, Magalhaes LC, Cosme LV (2009) Stimulatory sublethal response of a generalist predator to permethrin: hormesis, hormoligosis, or homeostatic regulation? J Econ Entomol 102(1):170–176. https://doi.org/10.1603/029.102.0124

    Article  CAS  PubMed  Google Scholar 

  • Hall FR (1979) Effects of synthetic pyrethroids on major insect and mite pests of apple. J Econ Entomol 72(3):441–446. https://doi.org/10.1093/jee/72.3.441

    Article  CAS  Google Scholar 

  • Hamedi N, Fathipour Y, Saber M (2011) Sublethal effects of abamectin on thebiological performance of the predatory mite, Phytoseius plumifer (Acari: Phytoseiidae). Exp Appl Acarol 53(1):29–40. https://doi.org/10.1007/s10493-010-9382-8

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhao J, Zheng Y, Weng Q, Biondi A, Desneux N, Wu K (2013) Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci. International Journal of Biological Sciences, 9(3), p.246 https://www.ijbs.com/v09p0246.htm

  • Hoy MA (2011) Agricultural acarology: introduction to integrated mite management (Vol. 7). CRC press

  • Huffaker CB, Van De Vrie M, McMurtry JA (1969) The ecology of tetranychid mites and their natural control. Ann Rev Entomol 14(1):125–174

    Article  Google Scholar 

  • Huffaker C, Van de Vrie M, McMurtry J (1970) Ecology of tetranychid mites and their natural enemies: a review: II. Tetranychid populations and their possible control by predators: an evaluation. Hilgardia 40(11):391–458

    Article  Google Scholar 

  • Idrees M, Gogi MD, Majeed W, Yaseen A, Iqbal M (2020) Impacts and evaluation of hormoligosis of some insect growth regulators on Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Int J Trop Insect Sci 40:855–867. https://doi.org/10.1007/s42690-020-00142-7

    Article  Google Scholar 

  • James DG, Price TS (2002) Fecundity in twospotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. J Econ Entomol 95(4):729–732. https://doi.org/10.1603/0022-0493-95.4.729

    Article  CAS  PubMed  Google Scholar 

  • Lee CY (2000) Sublethal effects of insecticides on longevity, fecundity and behaviour of insect pests: a review. J Biosci 11(1):107–112. https://doi.org/10.1007/s10340-012-0442-1

    Article  Google Scholar 

  • Lin R, He D, Men X, Zheng L, Cheng S, Tao L, Yu C (2020) Sublethal and transgenerational effects of acetamiprid and imidacloprid on the predatory bug Orius sauteri (Poppius)(Hemiptera: Anthocoridae). Chemosphere, 255, p.126778

  • Liu XC, Li QS, Liu QX (1998) The effects of insecticides on disposal behavior and fecundity of carmine spider mite. Acta Phytophylacica Sinica 25(2):156–160

    Google Scholar 

  • Lu YH, Zheng XS, Gao XW (2016) Sublethal effects of imidacloprid on the fecundity, longevity, and enzyme activity of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus). Bull Entomol Res 106(4):551–559

    Article  CAS  PubMed  Google Scholar 

  • Luckey TD (1968) Insecticide hormoligosis. J Econ Entomol 61(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Marcic D (2012) Acaricides in modern management of plant-feeding mites. J Pest Sci 85(4):395–408. https://doi.org/10.1007/s10340-012-0442-1

    Article  Google Scholar 

  • Monteiro VB, Gondim JrMG, Oliveira JEDM, Siqueira HA, Sousa JM (2015) Monitoring tetranychus urticae koch (acari: tetranychidae) resistance to abamectin in vineyards in the lower middle São Francisco Valley, vol 69. Crop Protection, pp 90–96. https://doi.org/10.1016/j.cropro.2014.12.012

  • Morse JG (1998) Agricultural implications of pesticide-induced hormesis of insects and mites. Hum Exp Toxicol 17(5):266–269. https://doi.org/10.1177/096032719801700510

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Liu Y, Liu B, Lu Y, Xu X, Qian X, Wu K, Desneux N (2014) Lethal and sublethal effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the mirid bug apolygus lucorum. J Pest Sci 87(4):731–738. https://doi.org/10.1007/s10340-014-0610-6

    Article  Google Scholar 

  • Pavela R, Stepanycheva E, Shchenikova A, Chermenskaya T, Petrova M (2016) Essential oils as prospective fumigants against Tetranychus urticae Koch. Ind Crops Prod 94:755–761. https://doi.org/10.1016/j.indcrop.2016.09.050

    Article  CAS  Google Scholar 

  • Pontes WJ, De Oliveira JC, Da Camara CA, Lopes AC, Gondim MGC, De Oliveira JV, Schwartz MO (2007) Composition and acaricidal activity of the resin’s essential oil of Protium bahianum Daly against two spotted spider mite (Tetranychus urticae). J Essent Oil Res 19(4):379–383

    Article  CAS  Google Scholar 

  • Qu Y, Xiao D, Li J, Chen Z, Biondi A, Desneux N, Gao X, Song D (2015) Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines. Ecotoxicology 24(3):479–487

    Article  CAS  PubMed  Google Scholar 

  • Rani KS, Devee A (2021) Lethal and sublethal effects of imidacloprid on development and reproduction of biocontrol agents Cocinella transversalis Fabricius (Coleoptera: Coccinellidae) and Cheilomenes sexmaculata (Fabricius)(Coleoptera. Journal of Entomology and Zoology Studies 2021; 9(1): 689–693

  • Riahi E, Shishehbor P, Nemati AR, Saeidi Z (2013) Temperature effects on development and life table parameters of Tetranychus urticae (Acari: Tetranychidae). J Agricultural Sci Technol 15:661–672

    Google Scholar 

  • Sangak Sani N, Kheradmand K, Talebi AA (2019) Sublethal effects of spirodiclofen on the demographic parameters of Tetranychus urticae Koch (Acari: Tetranychidae). Archives of Phytopathology and Plant Protection 52(9–10):938–952. https://doi.org/10.1080/03235408.2019.1668593

    Article  CAS  Google Scholar 

  • Sial MU, Zhao Z, Zhang L, Zhang Y, Mao L, Jiang H (2018) Evaluation of insecticides induced hormesis on the demographic parameters of Myzus persicae and expression changes of metabolic resistance detoxification genes. Sci Rep 8(1):1–8. https://doi.org/10.1038/s41598-018-35076-1

    Article  CAS  Google Scholar 

  • Singh JP, Marwaha KK (2000) Effect of sublethal concentrations of some insecticides on growth and development of maize stalk borer, Chilo partellus (swinhoe) larvae. Shashpa 7(2):181–186

    CAS  Google Scholar 

  • Song Y, Dong J, Sun H (2013) Chlorantraniliprole at sublethal concentrations may reduce the population growth of the asian corn borer, Ostrinia furnacalis (Lepidoptera: Pyralidae). Acta Entomologica Sinica 56(4):446–451

    CAS  Google Scholar 

  • Southam CM, Ehrlich J (1943) Effects of extract of western red-cedar heartwood on certain wood-decaying fungi in culture, vol 33. Phytopathology, pp 517–524

  • Sparks TC, Nauen R (2015) IRAC: Mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128

    Article  CAS  PubMed  Google Scholar 

  • Stark JD, Banken JA, Walthall WK (1998) The importance of the population perspective for the evaluation of side-effects of pesticides on beneficial species. Ecotoxicology. Springer, Boston, MA, pp 348–359

    Chapter  Google Scholar 

  • Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Ann Rev Entomol 48(1):505–519. https://doi.org/10.1146/annurev.ento.48.091801.112621

    Article  CAS  Google Scholar 

  • Szczepaniec A, Raupp MJ (2013) Direct and indirect effects of imidacloprid on fecundity and abundance of Eurytetranychus buxi (Acari: Tetranychidae) on boxwoods. Exp Appl Acarol 59(3):307–318. https://doi.org/10.1007/s10493-012-9614-1

    Article  PubMed  Google Scholar 

  • Tabebordbar F, Shishehbor P, Ziaee M, Sohrabi F (2020) Lethal and sublethal effects of two new insecticides spirotetramat and flupyradifurone in comparison to conventional insecticide deltamethrin on Trichogramma evanescens (Hymenoptera: Trichogrammatidae). J Asia Pac Entomol 23(4):1114–1119. https://doi.org/10.1016/j.aspen.2020.09.008

    Article  Google Scholar 

  • Tan Y, Biondi A, Desneux N, Gao XW (2012) Assessment of physiological sublethal effects of imidacloprid on the mirid bug apolygus lucorum (Meyer-Dür). Ecotoxicology 21(7):1989–1997. https://doi.org/10.1007/s10646-012-0933-0

    Article  CAS  PubMed  Google Scholar 

  • Ullah F, Gul H, Desneux N, Gao X, Song D (2019) Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii. Entomol Gen 39:325–337. https://doi.org/10.1127/entomologia/2019/0892

    Article  Google Scholar 

  • Ullah F, Gul H, Tariq K, Desneux N, Gao X, Song D (2020) Thiamethoxam induces transgenerational hormesis effects and alteration of genes expression in Aphis gossypii. Pestic Biochem Physiol 104557. 16510.1016/j.pestbp.2020.104557

  • Wang D, Gong P, Li M, Qiu X, Wang K (2009) Sublethal effects of spinosad on survival, growth and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manage Science: Former Pesticide Sci 65(2):223–227. https://doi.org/10.1002/ps.1672

    Article  CAS  Google Scholar 

  • Wang L, Zhang Y, Xie W, Wu Q, Wang S (2016) Sublethal effects of spinetoram on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem Physiol 132:102–107. https://doi.org/10.1016/j.pestbp.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tang X, Wang L, Zhang Y, Wu Q, Xie W (2014) Effects of sublethal concentrations of bifenthrin on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Syst Appl Acarology 19(4):481–490. https://doi.org/10.11158/saa.19.4.11

    Article  Google Scholar 

  • Waqas MS, Qian L, Shoaib AAZ, Cheng X, Zhang Q, Elabasy ASS, Shi Z (2019) Lethal and Sublethal Effects of Neonicotinoid Insecticides on the adults of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) on tomato plants. J Econ Entomol 112(3):1314–1321. https://doi.org/10.1093/jee/toy427

    Article  CAS  PubMed  Google Scholar 

  • Yuan HB, Li JH, Liu YQ, Cui L, Lu YH, Xu XY, Li Z, Wu KM, Desneux N (2016) Lethal, sublethal and transgenerational effects of the novel chiral neonicotinoid pesticide cycloxaprid on demographic and behavioral traits of Aphis gossypii (Hemiptera: Aphididae). Insect Sci 24(5):743–752. https://doi.org/10.1111/1744-7917.12357

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Zhang Z, Cui K, Zhao Y, Han J, Liu F, Mu W (2016) Effects of sublethal concentrations of cyantraniliprole on the development, fecundity and nutritional physiology of the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). PLoS ONE 11(6):e0156555

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang ZQ (2003) Mites of greenhouses: identification, biology and control. Cabi. pp.240

Download references

Acknowledgements

We thank the University of Süleyman Demirel Scientific Research Projects Coordination Unit (Project no: 4529-YL1-15) for financial support for this research. We are also thankful to Associate Professor Dr. Özgür Koşkan for help in the statistical analysis of the data. We are grateful to Dr. Mark Watkins for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Recep Ay.

Ethics declarations

Competing Interest

Authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balci, M.H., Ay, R. Effects of some insecticides on the biological parameters of Tetranychus urticae Koch (Acari: Tetranychidae). Int J Trop Insect Sci 43, 485–493 (2023). https://doi.org/10.1007/s42690-023-00959-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-00959-y

Keywords

Navigation