Skip to main content
Log in

Induced resistance in wheat Triticum aestivum L. by chemical- and bio- fertilizers against English aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) in greenhouse

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Wheat, Triticum aestivum L., is damaged by many insect pests including Sitobion avenae (Fabricius) (Hemiptera: Aphididae). Induced host-plant resistance is an important strategy to reduce damage of the cereal aphids. This study evaluated the effects of wheat seed treated with biofertilizers (Biofarm and Probio96) and the leaves treated with micronutrients (Librel Zinc and α-Iron) on biological parameters of the S. avenae in greenhouse conditions. The treatments have effects in the secondary metabolites in wheat leaves. The higher phenol and anthocyanin contents of wheat leaves occur in Biofarm treatment (345.70 and 0.750 mg/mL, respectively). The lower fecundity of S. avenae (5.33 offspring) occurs on plants treated with Biofarm treatment. The net reproductive rate of aphid fed on plants treated with different treatments changes from 1.63 to 29.56 offspring individual− 1, with the lower and higher values on Biofarm and control treatments, respectively. The lower and higher values of intrinsic rate of increase (r) and finite rate of increase (λ) of S. avenae occur on wheat treated with Biofarm (r = 0.018, λ = 1.018 day− 1) and control (r = 0.148, λ = 1.016 day− 1), respectively. The results indicate that treating seed with biofertilizers (Biofarm and Probio96) is an environmentally safe method and could be used to manage S. avenae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akca I, Ayvaz T, Yazici E, Smith CL, Chi H (2015) Demography and population projection of Aphis fabae (Hemiptera: Aphididae): with additional comments on life table research criteria. J Econ Entomol 108:1466–1478. https://doi.org/10.1093/jee/tov187

    Article  Google Scholar 

  • Andrewartha HG, Birch LC (1954) the distribution and abundance of animals. University of Chicago, Chicago

    Google Scholar 

  • Argandona VH, Corcuera LJ, Niemeyer HM, Campbell BC (1983) Toxicity and feeding deterrency of hydroxamic acids from Gramineae in synthetic diets against the greenbug, Schizaphis graminum. Entomol Exp Appl 34:134–138. https://doi.org/10.1111/j.1570-7458.1983.tb03307.x

    Article  CAS  Google Scholar 

  • Atlihan R, Kasap İ, Özgökçe MS, Polat-Akköprü E, Chi H (2017) Population growth of Dysaphis pyri (Hemiptera: Aphididae) on different pear cultivars with discussion on curve fitting in life table studies. J Econ Entomol 110:1890–1898. https://doi.org/10.1093/jee/tox174

    Article  Google Scholar 

  • Aznar A, Chen NW, Thomine S, Dellagi A (2015) Immunity to plant pathogens and iron homeostasis. J Plant Sci 240:90–97. https://doi.org/10.1016/j.plantsci.2015.08.022

    Article  CAS  Google Scholar 

  • Bala K, Sood AK, Pathania VS, Thakur S (2018) Effect of plant nutrition in insect pest management. J Pharmacogn Phytochemistry 7:2737–2742

    CAS  Google Scholar 

  • Berenbaum MR (1995) Turnabout is fair play: secondary roles for primary compounds. J Chem Ecol 21:925–940. https://doi.org/10.1007/BF02033799

    Article  CAS  Google Scholar 

  • Bohidar K, Wratten SD, Niemeyer HM (1986) Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Ann Appl Biol 109:193–198. https://doi.org/10.1111/j.1744-7348.1986.tb03199.x

    Article  CAS  Google Scholar 

  • Bong CFJ, Sikorowski PP (1991) Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of the corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae). J Invertebr Pathol 57:406–412. https://doi.org/10.1016/0022-2011(91)90145-G

    Article  Google Scholar 

  • Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dye F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. J Phytochem 87:65–77. https://doi.org/10.1016/j.phytochem.2012.11.009

    Article  CAS  Google Scholar 

  • Chen M, Han Z, Qiao X, Qu M (2007) Resistance mechanisms and associated mutations in acetylcholinesterase genes in Sitobion avenae (Fabricius). Pestic Biochem Physiol 87:189–195. https://doi.org/10.1016/j.pestbp.2006.07.009

    Article  CAS  Google Scholar 

  • Chi H (2018) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Available on: http://140.120, 197. Accessed 29 Oct 2009

  • Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin 24:225–240

    Google Scholar 

  • De Oliveira Araujo E (2015) Rizobacteria in the control of pest insects in agriculture. Afr J Plant Sci 9:368–373. https://doi.org/10.5897/AJPS2015.1318

    Article  Google Scholar 

  • Dehghani-yakhdani H, Iranpour S, Mehrnejad MR, Farshbaf-pouradab R (2019) the role of iron (Fe) in the population dynamics of pistachio psyllid, Agonoscena pistaciae (Hemiptera: Aphalaridae) in Pistacia orchards. Eur J Entomol 116:194–200. https://doi.org/10.14411/eje.2019.021

    Article  Google Scholar 

  • Edwards CA, Arancon NQ, Vasko-Bennett M, Askar A, Keeney G, Little B (2010) Suppression of green peach aphid (Myzus persicae) (Sulz.), citrus mealybug (Planococcus citri) (Risso), and two spotted spider mite (Tetranychus urticae) (Koch.) attacks on tomatoes and cucumbers by aqueous extracts from vermicomposts. J Crop Protect 29:80–93. https://doi.org/10.1016/j.cropro.2009.08.011

    Article  Google Scholar 

  • Fahad S, Masood Ahmad Kh, Akbar Anjum M, Hussain S (2014) The Effect of Micronutrients (B, Zn and Fe) foliar application on the growth, flowering and corm production of gladiolus (Gladiolus grandiflorus L.) in calcareous soils. J Agric Sci Technol 16:1671–1682

    Google Scholar 

  • Ghasemi S, Ahmadzadeh M, Torabi S, Hosseini M (2018) Improvement of the yield and quality of wheat by seed treatment of biological fertilizers Biofarm and Probio96 under field conditions. Seed Sci Technol 7:143–152. https://doi.org/10.22034/ijsst.2018.108058.1019 ((In Persian))

    Article  Google Scholar 

  • Goodman D (1982) optimal life histories, optimal notation, and the value of reproductive value. J Am Nat 119:803–823

    Article  Google Scholar 

  • Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Appl Soil Ecol 39:187–200. https://doi.org/10.1016/j.apsoil.2007.12.006

    Article  Google Scholar 

  • Haukioja E, Ossipov V, Lempa K (2002) Interactive effects of leaf maturation and phenolics on consumption and growth of a geometrid moth. Entomol Exp Appl 104:125–136. https://doi.org/10.1046/j.1570-7458.2002.00999.x

    Article  CAS  Google Scholar 

  • Herman M, Nault BA, Smart CD (2008) Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. J Crop Protect 27:996–1002. https://doi.org/10.1016/j.cropro.2007.12.004

    Article  Google Scholar 

  • Hussain M, Asgher Z, Tahir M, Ijaz M, Shahid M, Ali H, Sattar A (2016) Bacteria in combination with fertilizers improve growth, productivity and net returns of wheat (Triticum aestivum L.). Pak J Agric Sci 53:633–645. https://doi.org/10.21162/PAKJAS/16.4901

    Article  Google Scholar 

  • Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem 51:6509–6515. https://doi.org/10.1021/jf0343074

    Article  CAS  Google Scholar 

  • Larsson S, Wirén A, Lundgren L, Ericsson T (1986) Effects of light and nutrient stress on leaf phenolic chemistry in Salix dasyclados and susceptibility to Galerucella lineola (Coleoptera). J Oikos 47:205–210. https://doi.org/10.2307/3566047

    Article  CAS  Google Scholar 

  • Leszczyński B, Warchoł J, Niraz S (1985) the influence of phenolic compounds on the preference of winter wheat cultivars by cereal aphids. Int J Trop Insect Sci 6:157–158. https://doi.org/10.1017/S1742758400006548

    Article  Google Scholar 

  • Liu Z, Li D, Gong P, Wu K (2004) Life table studies of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on different host plants. J Environ Entomol 33:1570–1576. https://doi.org/10.1603/0046-225X-33.6.1570

    Article  Google Scholar 

  • Mardani-Talaee M, Zibaee A, Nouri-Ganblani G, Razmjou J (2016) Chemical and organic fertilizers affect physiological performance and antioxidant activities in Myzus persicae (Hemiptera: Aphididae). J Invertebr Surviv 13:122–133

    Google Scholar 

  • Mardani-Talaee M, Razmjou J, Nouri-Ganbalani G, Hassanpour M, Naseri B (2017) Impact of chemical, organic and bio-fertilizers application on bell pepper, Capsicum annuum L. and biological parameters of Myzus persicae (Sulzer) (Hem.: Aphididae). J Neotropical Entomol 46:578–586

    Article  CAS  Google Scholar 

  • Naeem M, Aslam Z, Khaliq A, Ahmed JN, Nawaz A, Hussain M (2018) Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat. Braz J Microbiol 49:9–14. https://doi.org/10.1016/j.bjm.2017.10.005

  • Najafabadi SM, Shoushtari RV, Zamani A, Arbad M, Farazmand H (2011) Effect of nitrogen fertilization on Tetranychus urticae Koch (Acari: Tetranychidae) populations on common bean cultivars. Middle East J Sci Res 8:990–998

    Google Scholar 

  • Nasab RS, Yali MP, Bozorg-Amirkalaee M (2018) Effects of humic acid and plant growth-promoting rhizobacteria (PGPR) on induced resistance of canola to Brevicoryne brassicae L. Bull Entomol Res 15:1–11. https://doi.org/10.1017/S0007485318000779

    Article  CAS  Google Scholar 

  • Nichol H, Law JH, Winzerling JJ (2002) Iron metabolism in insects. Annu Rev Entomol 47:535–559

    Article  CAS  Google Scholar 

  • Noret N, Josens G, Escarré J, Lefèbvre C, Panichelli S, Meerts P (2007) Development of Issoria lathonia (Lepidoptera: Nymphalidae) on zinc-accumulating and nonaccumulating Viola species (Violaceae). J Environ Toxicol Chem 26:565–571. https://doi.org/10.1897/06-413R.1

    Article  CAS  Google Scholar 

  • Pham DQ, Winzerling JJ (2010) Insect ferritins: Typical or atypical? Biochimica et Biophysica. Acta Gen Subj 1800:824–833. https://doi.org/10.1016/j.bbagen.2010.03.004

    Article  CAS  Google Scholar 

  • Rajendran L, Samiyappan R, Raguchander T, Saravanakumar D (2007) Endophytic bacteria mediate plant resistance against cotton bollworm. J Plant Interact 2:1–10. https://doi.org/10.1080/17429140701420003

    Article  CAS  Google Scholar 

  • Rashid M, Khan A, Hossain MT, Chung YR (2017) Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing 4phytoalexin deficient4 in Arabidopsis. Front Plant Sci 8:211. https://doi.org/10.3389/fpls.2017.00211

    Article  Google Scholar 

  • Romera FJ, García MJ, Lucena C, Martinez Medina A, Aparicio M, Ramos J, Pérez-Vicente R (2019) Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Front Plant Sci 10:287. https://doi.org/10.3389/fpls.2019.00287

    Article  Google Scholar 

  • Rostami M, Zamani A, Goldasteh S, Shoushtari R, Kheradmand K (2012) Influence of nitrogen fertilization on biology of Aphis gossypii (Hemiptera: Aphididae) reared on Chrysanthemum iindicum (Asteraceae). J Plant Protect Res 52:118–121

    Article  Google Scholar 

  • Sabbagh SK, Poorabdollah A, Sirousmehr A, Gholamalizade AA (2017) Bio-fertilizers and systemic acquired resistance in Fusarium infected wheat. J Agric Sci 19:453–464

    Google Scholar 

  • Sarwar M (2011) Effects of Zinc fertilizer application on the incidence of rice stem borers (Scirpophaga species) (Lepidoptera: Pyralidae) in rice (Oryza sativa L.) crop. J Cereals Oilseeds 2:61–65

    CAS  Google Scholar 

  • Saska P, Skuhrovec J, Lukáš J, Chi H, Tuan SJ, Honěk A (2016) Treatment by glyphosate-based herbicide alters life history parameters of the rose-grain aphid Metopolophium dirhodum. Sci Rep 6:27801. https://doi.org/10.1038/srep27801

    Article  CAS  Google Scholar 

  • Sharaby AM, EL-Hawary FM, Moawad SS (2013) Zinc Sulfate as a growth disruptor for Spodoptera littoralis with reference to histological changes in larval endocrine glands. Int Organ Sci Res J Agric Vet Sci 5:67–74

    Google Scholar 

  • Silva RB, Zanuncio JC, Serrão JE, Lima ER, Figueiredo MLC, Cruz I (2009) Suitability of different artificial diets for development and survival of stages of the predaceous ladybird beetle Eriopis connexa. Phytoparasitica 37:115–123. https://doi.org/10.1007/s12600-008-0015-2

    Article  Google Scholar 

  • Simmonds MS (2001) Importance of flavonoids in insect–plant interactions: feeding and oviposition. Phytochemistry 56:245–252. https://doi.org/10.1016/S0031-9422(00)00453-2

    Article  CAS  Google Scholar 

  • Simmonds MS, Stevenson PC (2001) Effects of isoflavonoids from Cicer on larvae of Heliocoverpa armigera. J Chem Ecol 27:965–977. https://doi.org/10.1023/A:1010339104206

    Article  CAS  Google Scholar 

  • Singh R, Dangol S, Chen Y, Choi J, Cho YS, Lee JE (2016) Magnaporthe oryzae effector avr-pii helps to establish compatibility by inhibition of the rice NADP-malic enzyme resulting in disruption of oxidative burst and host innate immunity. Mol Cells 39:426–438

    Article  CAS  Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:49–55

    CAS  Google Scholar 

  • Southwood TRE, Henderson PA (2009) Ecological Methods. Blackwell Science Press, Oxford

    Google Scholar 

  • Stevenson PC, Anderson JC, Blaney WM, Simmonds MSJ (1993) Developmental inhibition of Spodoptera litura (Fab.) larvae by a novel caffeoylquinic acid from the wild groundnut, Arachis paraguariensis (Chod et Hassl.). J Chem Ecol 19:2917–2933

    Article  CAS  Google Scholar 

  • Tang X, Zhou B (2013) Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J 27:288–298

    Article  CAS  Google Scholar 

  • Thackray DJ, Diggle AJ, Jones RAC (2009) BYDV PREDICTOR: a simulation model to predict aphid arrival, epidemics of Barley yellow dwarf virus and yield losses in wheat crops in a Mediterranean-type environment. Plant Pathol 58:186–202. https://doi.org/10.1111/j.1365-3059.2008.01950.x

    Article  Google Scholar 

  • Van de Mortel JE, de Vos RC, Dekkers E, Pineda A, Guillod L, Bouwmeester K, Raaijmakers JM (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188

    Article  Google Scholar 

  • Varley GC, Gradwell GR (1970) Recent advances in insect population dynamics. Annu Rev Entomol 15:1–24

    Article  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability. Molecules 21:573. https://doi.org/10.3390/molecules21050573

    Article  CAS  Google Scholar 

  • Verbon EH, Trapet PL, Stringlis IA, Kruijs S, Bakker PA, Pieterse CM (2017) Iron and immunity. Annu Rev Phytopathol 55:355–375

    Article  CAS  Google Scholar 

  • Vijayasamundeeswari A, Ladhalakshmi D, Sankaralingam A, Samiyappan R (2009) Plant growth promoting rhizobacteria of cotton affecting the developmental stages of Helicoverpa armigera. J Plant Protect Res 49:239–243

    Article  CAS  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320. https://doi.org/10.4161/psb.21663

    Article  Google Scholar 

  • Wojcicka A (2010) Cereal phenolic compounds as biopesticides of cereal aphids. Pol J Environ Stud 19:1337–1343

    CAS  Google Scholar 

  • Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396. https://doi.org/10.1093/jee/90.2.391

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by fund of the Scientific Research University of Lorestan (Lorestan, Iran).

Author information

Authors and Affiliations

Authors

Contributions

MP performed experimental work and wrote the initial manuscript. JSh and MMT planned and designed the experiment, analyzed the data, and reviewed the final manuscript. AS helped in designing the experiment and reviewed the results. JES review the draft manuscript. All authors approved the version considered for publication.

Corresponding author

Correspondence to Jahanshir Shakarami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourya, M., Shakarami, J., Mardani-Talaee, M. et al. Induced resistance in wheat Triticum aestivum L. by chemical- and bio- fertilizers against English aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) in greenhouse. Int J Trop Insect Sci 40, 1043–1052 (2020). https://doi.org/10.1007/s42690-020-00164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00164-1

Keywords

Navigation