Skip to main content
Log in

In vitro regeneration of Caralluma stalagmifera var. stalagmifera through LCT and ex vitro rooting: a cost effective approach for conservation of succulents

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

In vitro regeneration of Caralluma stalagmifera var. stalagmifera has been standardized through liquid culture technique; C. stalagmifera var. stalagmifera is an important succulent plant species with several medicinal and nutraceutical properties. The present study focuses on in vitro micropropagation through liquid culture technique (LCT) and ex vitro rooting of C. stalagmifera. Nodal shoot segments (3–4 cm) of mature 06 months old C. stalagmifera var. stalagmifera were taken as explant. Murashige and Skoog’s liquid medium (without agar) augmented with 0.5 mg L−1 BAP(6-benzylaminopurine) was found optimal for bud break; 3.4 ± 0.60 shoots with 2.33 ± 0.49 cm shoot length (SL) was obtained from each node. Shoots were multiplied by sub culturing on various combinations of BAP, indole-3-acetic acid (IAA) and kinetin. Maximum number (5.05 ± 1.60) of shoots obtained on liquid MS media supplemented with 0.1 mg L−1 each of BAP, Kinetin and IAA with SL of 3.60 ± 0.75 cm. Ex vitro rooting method was used to initiate rooting of in vitro generated shoots as it provides additional advantage in acclimatization and better adaptation to the newly formed shoots. Shoot bases were treated with various root inducing hormones thereafter transferred to sterilized soilrite and placed in the greenhouse. 90% in vitro regenerated plantlets were rooted successfully. Liquid culture medium is found to be better for micropropagation of plants; it is easy to prepare, less time consuming and require less manual handling and provides early response of cultures. Moreover, liquid culture technique provides fast and easy nutrients absorption and better aeration; results in faster shoot growth. An effective ex vitro rooting method was developed which is better over other methods of rooting as it provides hardening climate to the newly formed plantlets earlier to acclimatization. The liquid culture technique and ex vitro rooting both are helpful in reducing the cost of in vitro regeneration protocol of medicinal succulents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated during the current study.

Abbreviations

MS:

Murashige and Skoog’s medium

IBA:

Indole-3-butyric acid

NOA:

2-Naphthoxy acetic acid

IAA:

Indole-3-acetic acid

Kn:

Kinetin (6-furfuryl amino Purine)

BAP:

6-Benzylaminopurine

rpm:

Rotation per minute

LCT:

Liquid culture technique

SL:

Shoot length

PPFD:

Photosynthetic photon flux density

References

  • Aruna V, Kiranmai C, Karuppusamy S, Pullaiah T (2009) Micropropagation of three varieties of Caralluma adscendens via nodal explants. J Plant Biochem Biotechnol 18(1):121–123

    Article  CAS  Google Scholar 

  • Aslam I, Iqbal J, Peerzada S, Afridi MS, Ishtiaq S (2019) Microscopic investigations and pharmacognostic techniques for the standardization of Caralluma edulis (Edgew.) Benth. ex Hook. F. Microsc Res Tech 82(11):1891–1902

    PubMed  Google Scholar 

  • Bulchandani N, Shekhawat GS (2020) Salicylic acid mediated up regulation of carvone biosynthesis during growth phase in cell suspension cultures of Anethum graveolens. 3 Biotech 10(11):01–11

    Article  Google Scholar 

  • Bulchandani N, Ahmad P, Shekhawat GS (2020) Bioactive potential of proline in modulation of antioxidant metabolism and enhancement of stevioside production in callus cultures of Stevia rebaudiana. Preslia J. 92(8):01–24

    Google Scholar 

  • Chandran R, Sajeesh T, Parimelazhagan T (2014) Total Phenolic Content, Anti-Radical property and HPLC profiles of Caralluma diffusa (Wight) NE Br. J Biol Active Prod Nat 4(3):188–195

    CAS  Google Scholar 

  • Compton ME, Mize CW (1999) Statistical considerations for in vitro research: I—Birth of an idea to collecting data. In Vitro Cell Dev Biol Plant 35(2):115–121

    Article  CAS  Google Scholar 

  • Dutt HC, Singh S, Avula B, Khan IA, Bedi YS (2012) Pharmacological review of Caralluma R. Br. with special reference to appetite suppression and anti-obesity. J Med Food 15(2):108–119

    Article  CAS  PubMed  Google Scholar 

  • Heuer MA, Clement K, Thomas M, Peters J, IOVATE T & P Inc, Northern Innovations and Formulations Corp (2010) Appetite-suppressing weight management composition. U.S. Patent Application 12/313,126

  • Jagtap AP, Singh NP (1999) Fascicles of Flora of India Fasc. 24. Botanical Survey of India

  • Jayalakshmi G, Anuradha V, Ratnakumari S, Kalyani K, Babu SS (2016) A novel pentacyclic triterpenoid isolated from Caralluma attenuate root. Eur J Pharm Med Res 36:342–344

    Google Scholar 

  • Kalimuthu K, Prabakaran R, Kalaiyarasi K, Jeyaraman S, Sasikala T (2013) GC-MS analysis of bioactive constituents of Caralluma truncato-coronata (Sedgw) Gravely & Mayur (Asclepiadaceae). Asia Pac J Res 1(9):42–50

    Google Scholar 

  • Kunert O, Rao BVA, Babu GS, Padmavathi M, Kumar BR, Alex RM, Schühly W, Simic N, Kühnelt D, Rao AVNA (2006) Novel steroidal glycosides from two Indian Caralluma species, C. stalagmifera and C. indica. Helvet Chim Acta 89(2):201–209

    Article  CAS  Google Scholar 

  • Kunert O, Rao VG, Babu GS, Sujatha P, Sivagamy M, Anuradha S, Rao BVA, Kumar BR, Alex RM, Schühly W, Kühnelt D (2008) Pregnane glycosides from Caralluma adscendens var. fimbriata. Chem Biodiversity 5(2):239–250

    Article  CAS  Google Scholar 

  • Lawrence RM, Choudhary S (2004). Caralluma fimbriata in the treatment of obesity. In: Proceedings of the 12th annual world congress of anti-aging medicine

  • Malladi S, Ratnakaram VN, Babu KS, Pullaiah T (2017) Phytochemical investigation of Caralluma lasiantha: isolation of stigmasterol, an active immunomodulatory agent. Int J Chem Sci 15(1):399

    Google Scholar 

  • Manokari M, Priyadharshini S, Jogam P, Dey A, Shekhawat MS (2021a) Metatopolin and liquid medium mediated enhanced micropropagation via ex vitro rooting in Vanilla planifolia Jacks. ex Andrews. Plant Cell Tiss Organ Cult 146:69–82. https://doi.org/10.1007/s11240-021-02044-z

    Article  CAS  Google Scholar 

  • Manokari M, Priyadharshini S, Shekhawat MS (2021b) Repairing mechanism of foliar micro-morphological anomalies during acclimatization and field transfer of in vitro raised plantlets of Aerva lanata (L.) Juss–. ex Schult.: a medicinally important plant. Vegetos. https://doi.org/10.1007/s42535-021-00317-8

    Article  Google Scholar 

  • Manokari M, Cokulraj M, Dey A, Faisal M, Alatar AA, Alok A, Shekhawat MS (2023) Polyethylene-glycol modulated foliar anatomical and histochemical traits in Coccoloba uvifera (L.) L.: a salt and drought tolerant tree species. South Afr. J. Bot. 153:28–36

    Article  Google Scholar 

  • Mathur S, Bulchandani N, Parihar S, Shekhawat GS (2017) Critical review on steviol glycosides: pharmacological, toxicological and therapeutic aspects of high potency zero caloric sweetener. Int J Pharmacol 13(7):916–928

    Article  CAS  Google Scholar 

  • Mbiyu M, Muthoni J, Kabira J, Muchira C, Pwaipwai P, Ngaruiya J, Onditi J, Otieno S (2012) Comparing liquid and solid media on the growth of plantlets from three Kenyan potato cultivars. J Exp Agric Int 20:81–89

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Parihar S (2016) Caralluma edulis: an endemic, edible, medicinal and threatened plant species of Indian Thar Desert. Biotech Today Int J Biol Sci 6(1):37–40

    Article  Google Scholar 

  • Parihar S (2017) In vitro conservation protocol of Ceropegia bulbosa: an important medicinal and threatened plant species of Western Rajasthan. Plant Sci Today 4(1):21–27

    Article  CAS  Google Scholar 

  • Parihar S (2018) In vitro biochemical characterization of Caralluma edulis (Edgew.) Benth. & Hook. f. and Caralluma adscendens (Roxb.) R. Br.: medicinally potent Indian plant species. Vegetos Int J Plant Res Biotechnol 31:142–146

    Google Scholar 

  • Parihar S (2020) Protein profiling of regenerative and non regenerative callus cultures of Glossonema varians: a rare, endemic and edible plant of Indian Thar Desert. Vegetos 33(3):385–389

    Article  Google Scholar 

  • Parihar S, Dwivedi NK (2019) Comprehensive analysis of liquid and semisolid culture system for in vitro propagation and conservation of Caralluma edulis: an appetite suppressant medicinal succulent of the Indian Thar desert. Plant Cell Biotechnol Mol Biol 20:1020–1031

    Google Scholar 

  • Parihar S, Dwivedi NK (2020) A note on an important edible, rare and the famine food plant of Indian Thar Desert: Glossonema varians (Stocks) Benth. ex Hook.f. Genet Resour Crop Evol 67(7):1929–1934

    Article  Google Scholar 

  • Pati PK, Kaur J, Singh P (2011) A liquid culture system for shoot proliferation and analysis of pharmaceutically active constituents of Catharanthus roseus (L.) G. Don. Plant Cell Tissue Organ Culture 105(3):299–307

    Article  CAS  Google Scholar 

  • Qiu SX, Cordell GA, Kumar BR, Rao YN, Ramesh M, Kokate C, Rao AVNA (1999) Bisdesmosidic pregnane glycosides from Caralluma lasiantha. Phytochem 50(3):485–491

    Article  CAS  Google Scholar 

  • Ramesh M, Rao YN, Rao AA, Prabhakar MC, Rao CS, Muralidhar N, Reddy BM (1998) Antinociceptive and anti-inflammatory activity of a flavonoid isolated from Caralluma attenuata. J Ethnopharmacol 62(1):63–66

    Article  CAS  PubMed  Google Scholar 

  • Ranaweera KK, Gunasekara MTK, Eeswara JP (2013) Ex vitro rooting: a low cost micropropagation technique for Tea (Camellia sinensis (L.) O. Kuntz) hybrids. Sci Hortic 155:8–14

    Article  CAS  Google Scholar 

  • Rathore JS, Rai MK, Phulwaria M, Shekhawat NS (2014) A liquid culture system for improved micropropagation of mature Acacia nilotica (L.) Del. Ssp. indica and ex vitro rooting. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 84(1):193–200

    Article  CAS  Google Scholar 

  • Reddy BM, Byahatti VV, Appa Rao AN, Ramesh M (1996) Anti-inflammatory activity of Stapelia nobilis and Caralluma stalagmifera. Fitoterapia (Milano) 67(6):545–547

    Google Scholar 

  • Reddy KD, Rao BVA, Babu GS, Kumar BR, Braca A, Vassallo A, Rao AVNA (2011) Minor pregnanes from Caralluma adscendens var. gracilis and Caralluma pauciflora. Fitoterapia 82(7):1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Renuka B (2014) A high-performance thin layer chromatography determination and quantification of rutin in Caralluma nilagiriana, an endemic medicinal plant. Chemistry 1(2):12–22

    Google Scholar 

  • Revathi J, Manokari M, Shekhawat MS (2018) Optimization of factors affecting in vitro regeneration, flowering, ex vitro rooting and foliar micromorphological studies of Oldenlandia corymbosa L.: a multipotent herb. Plant Cell Tissue Organ Cult 134:1–13

    Article  CAS  Google Scholar 

  • Rezali NI, Sidik NJ, Saleh A, Osman NI, Adam NAM (2017) The effects of different strength of MS media in solid and liquid media on in vitro growth of Typhonium flagelliforme. Asian Pac J Trop Biomed 7(2):151–156

    Article  Google Scholar 

  • Shekhawat GS, Mathur S, Batra A (2009) Role of phytohormones and nitrogen in somatic embryogenesis induction in cell culture derived from leaflets of Azadirachta indica. Biol Plant 53(4):707

    Article  CAS  Google Scholar 

  • Shekhawat MS, Kannan N, Manokari M, Ravindran CP (2015) Enhanced micropropagation protocol of Morinda citrifolia L. through nodal explants. J Appl Res Med Arom Plants 2:174–181. https://doi.org/10.1016/j.jarmap.2015.06.002

    Article  Google Scholar 

  • Sreelatha VR, Rani SS, Reddy PV, Naveen M, Ugraiah A, Pullaiah T (2009) In vitro propagation of Caralluma sarkariae Lavranos & Frandsen—an endemic and endangered medicinal plant

  • Ugraiah A, Sreelatha VR, Reddy PK, Rajasekhar K, Rani SS, Karuppusamy S, Pullaiah T (2011) In vitro shoot multiplication and conservation of Caralluma bhupenderiana Sarkaria—an endangered medicinal plant from South India. Afr J Biotech 10(46):9328–9336

    Article  CAS  Google Scholar 

  • Vanitha A, Kalimuthu K, Chinnadurai V, Nisha KJ (2019) Phytochemical screening, FTIR and GCMS analysis of aqueous extract of Caralluma bicolor–An endangered plant. Asian J Pharm Pharmacol 5(6):1122–1130

    Article  CAS  Google Scholar 

  • Venkatesh S, Reddy GD, Reddy BM, Ramesh M, Rao AA (2003) Antihyperglycemic activity of Caralluma attenuata. Fitoterapia 74(3):274–279

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Liang C, Yang L, Li Y (2010) In vitro and ex vitro rooting of Siratia grosvenorii, a traditional medicinal plant. Acta Physiol Plant 32(1):115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Suman Parihar is thankful to Dr. S. Karuppusamy, Department of Botany, The Madura College, Madurai, Tamil Nadu and Dr.Venkatesan Kannan, ICAR-CIARI, Port Blair, Andman & Nicobar Islands for helping in identification of the plant. Author is grateful to Prof G. S. Shekhawat for his help in manuscript preparation. Author is also thankful to Prof. N S Shekhawat for providing laboratory facilities.

Funding

This research work did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

SP conceptualized the study; conducted all the experiments; and prepared the manuscript.

Corresponding author

Correspondence to Suman Parihar.

Ethics declarations

Conflict of interest

Author declares that there is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 42 KB)

Supplementary file2 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parihar, S. In vitro regeneration of Caralluma stalagmifera var. stalagmifera through LCT and ex vitro rooting: a cost effective approach for conservation of succulents. Vegetos 36, 1535–1543 (2023). https://doi.org/10.1007/s42535-023-00567-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-023-00567-8

Keywords

Navigation