Skip to main content
Log in

MHD Mixed Convection of Nanofluid in a Lid-Driven Porous Trapezoidal Cavity with a Heated Obstacle

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

This study uses numerical simulation to model MHD mixed convection nanofluid flow within a permeable trapezoidal chamber with a heated obstacle. Considered are the volume fractions (1–5%) of copper (Cu), alumina (Al2O3), and silver (Ag) nano-sized particles when mixed with water (H2O). With a constant velocity, upper wall moves left to right while bottom wall steps from right to left. A lower temperature is kept on upper wall, while left, right, and bottom walls are kept at warmed. There are two types of obstacles inside the enclosure: a constant square heated obstacle (case-I) and a heat-generating square obstacle (case-II). To investigate how the liquid flow and heat transport properties within the chamber are impacted with the Darcy number (Da) and Richardson number (Ri), the governing PDEs are solved by Galerkin weighted residual based finite element technique. Results are compared to published papers to validate the computational process. The findings are displayed using streamlines, isotherms, temperature, and velocity profiles, and mean Nusselt numbers. The outcomes demonstrate that when Richardson number rises, heat transportation rate increases. It is shown that an effective control parameter for temperature transport is Darcy number. Moreover, it is found that when only 5% nanoparticles are used, heat transport rate augment by 17.12%. Richardson number is an effective control parameter for heat transport via a porous material enclosure. Mass and heat transport rates both rise with an increment in the thermal Darcy number. Furthermore, the flow strength rises as Richardson number rises. Moreover, the average Nu increases by 15.27% for 5% nanoparticles volume at \(Da=1{0}^{-2}\) in case I whereas it increases only 0.3% for same number of nanoparticles in case II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Since no data was generated or investigated for this article, there is no date sharing available.

Abbreviations

B 0 :

Magnetic induction [Wbm2]

C p :

Specific heat at constant pressure [Jkg1 K1]

q :

Heat flux

∆T :

Dimensional temperature difference [K]

g :

Gravitational acceleration [ms2]

h :

Convective heat transfer coefficient [Wm2 K1]

k :

Thermal conductivity of fluid [W/mK]

L :

Height or base of square cavity [m]

K :

Thermal conductivity ratio fluid

N :

Total number of nodes

Nu av :

Average Nusselt number

Nu l :

Local Nusselt number

P :

Non-dimensional pressure

p :

Pressure

Gr :

Grashof number

Ha :

Hartmann number

Pr :

Prandtl number

Ra :

Rayleigh number

Re :

Reynolds number

Da :

Darcy number

Ri :

Richardson number

T :

Dimensional fluid temperature [K]

T h :

Temperature of hot wall [K]

T c :

Temperature of cold wall [K]

U :

X component of dimensionless velocity

u :

X component of velocity [ms1]

V :

Y component of dimensionless velocity

v :

Y component of velocity [ms1]

U 0 :

X component of lid velocity [ms1]

V 0 :

Y component of lid velocity [ms1]

x, y :

Cartesian coordinates [m]

X, Y :

Dimensionless coordinates

∝:

Thermal diffusivity [ms−2]

β:

Coefficient of thermal expansion [K−1]

ρ:

Density of the fluid [kg/m3]

∆θ :

Dimensionless temperature difference

θ :

Dimensionless fluid temperature

θ αυ :

Average temperature

μ :

Dynamic viscosity of the fluid [m2s1]

Ψ :

Stream function

ν :

Kinematic viscosity of the fluid [m2s1]

σ :

Fluid electrical conductivity [Ω1 m1]

ϕ:

Nanoparticle volume fraction

b :

Bottom wall

l :

Left wall

r :

Right wall

c :

Cold

h :

Hot

f :

Base fluid

s :

Nanoparticle

nf :

Nanofluid

References

  1. S.P. Jang, S.U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84(21), 4316–4318 (2004)

    Article  Google Scholar 

  2. J.K. Hwang, Y.M. Lee, S.I. Jeong, Y.C.A. Cheong, Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 186(2), 145–153 (2008)

    Article  Google Scholar 

  3. S.M.S. Murshed, K.C. Leong, C. Yang, Thermophysical and electronics properties of nanofluids-a critical review. Appl. Therm. Eng. 28(17–18), 2109–2125 (2008)

    Article  Google Scholar 

  4. C. Pang, J.W. Lee, Y.T. Kang, Review on combined heat and mass transfer characteristics in nanofluids. Int. J. Therm. Sci. 87, 49–67 (2015)

    Article  Google Scholar 

  5. T. Islam, M. Yavuz, N. Parveen, M.F. Al-Asad, Impact of non-uniform periodic magnetic field on unsteady natural convection flow of nanofluids in square enclosure. Fractal and Fractional 6(2), 101 (2022)

    Article  Google Scholar 

  6. T. Islam, M.N. Alam, M.I. Asjad, N. Parveen, Y.M. Chu, Heatline visualization of MHD natural convection heat transfer of nanofluid in a prismatic enclosure. Sci. Rep. 11, 10972 (2021)

    Article  Google Scholar 

  7. Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000)

    Article  Google Scholar 

  8. R. Jou, S. Tzdng, Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosure. Int. Commun. Heat Mass Trans. 33, 727–736 (2006)

    Article  Google Scholar 

  9. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Trans. 46, 3639–3653 (2003)

    Article  Google Scholar 

  10. G.A. Sheikhzadeh, M. Dastmalchi, H. Khoarasanizadeh, Effects of walls temperature variation on double diffusive natural convection of A12O3-water nanofluid in an enclosure. Heat Mass Transfer 49, 1689–1700 (2013)

    Article  Google Scholar 

  11. A. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int. Commn. Heat Mass Trans. 35, 657–665 (2008)

    Article  Google Scholar 

  12. T. Islam, M.N. Alam, S. Niazai, I. Khan, M. Fayz-Al-Asad, S. Alqahtani, Heat generation/absorption effect on natural convective heat transfer in a wavy triangular cavity filled with nanofluid. Sci. Rep. 13(1), 21171 (2023)

    Article  Google Scholar 

  13. T. Islam, R. Nasrin, Thermal operation by nanofluids with various aspects: a comprehensive numerical appraisal, Waves in Random and Complex Media. (2022).

  14. M. Chandrasekar, S. Suresh, A. Chandra Bose, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exper Thermal Fluid Sci 34(2), 210–216 (2010)

    Article  Google Scholar 

  15. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Aromalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  Google Scholar 

  16. S.M. Aminossadati, B. Ghasemi, Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid. Comput. Math. Appli. 61, 1739–1753 (2011)

    Article  MathSciNet  Google Scholar 

  17. M.A. Ismael, T. Armaghani, A.J. Chamkha, Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular solid. J. Taiwan Inst. Chem. Eng. 59, 138–151 (2016)

    Article  Google Scholar 

  18. M.M. Rahman, H.F. Oztop, A. Ahsan, J. Orfi, Natural convection effects on heat and mass transfer in a curvilinear triangular cavity. Int. J. Heat Mass Trans. 55, 6250–6259 (2012)

    Article  Google Scholar 

  19. J.A. Esfahani, V. Bordbar, Double diffusive natural convection heat transferenhancement in a square enclosure using nanofluids. J. Nanotec. Eng. Medicine 2, 021002–021019 (2011)

    Article  Google Scholar 

  20. P. Keblinski, J.A. Eastman, D.G. Chaill, Nanofluids for thermal transport. Mater. Today 8(6), 36–44 (2005)

    Article  Google Scholar 

  21. F. Selimefendigil, H.F. Oztop, Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation. J. Tai. Ins. Chem. Eng. 56, 42–56 (2015)

    Article  Google Scholar 

  22. M.A. Mansour, M.M. Abd-Elaziz, R.A. Mohamed, S.E. Ahmed, Unsteady natural convection, heat and mass transfer in inclined triangular porous enclosures in the presence of heat source or sink: effect of sinusoidal variation of boundary conditions. Transp. Porous Med. 87, 7–23 (2011)

    Article  Google Scholar 

  23. Y. Varol, H.F. Oztop, A. Varol, Free convection in porous media filled right-angle triangular enclosures. Int. Comm. Heat Mass Transfer 33, 1190–1197 (2006)

    Article  Google Scholar 

  24. T. Basak, C. Thirumalesha, S. Roy, Finite element simulations of natural convection in a right-angle triangular enclosure filled with a porous medium: effects of various thermal boundary conditions. J. Porous Media 11, 159–178 (2008)

    Article  Google Scholar 

  25. A.J. Chamkha, H.A. Naser, Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients. Int. J. Therm. Sci. 40, 227–244 (2001)

    Article  Google Scholar 

  26. I. Waini, A. Ishak, T. Groşan, I. Pop, Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. Int. Commun. Heat Mass Transfer 114, 104565 (2020)

    Article  Google Scholar 

  27. K. Al-Farhany, A.D. Abdulsahib, Study of mixed convection in two layers of saturated porous medium and nanofluid with rotating circular cylinder. Prog. Nucl. Energy 135, 103723 (2021)

    Article  Google Scholar 

  28. M.A. Teamah, Numerical Simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source. Int. J. Therm. Sci. 47, 237–248 (2008)

    Article  Google Scholar 

  29. A.H. Mahmoudi, I. Pop, M. Shahl, Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid”. Int. J. Therm. Sci. 59, 126–140 (2012)

    Article  Google Scholar 

  30. M.A. Teamah, W.M. El-Maghlany, Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Int. J. Therm. Sci. 58, 130–142 (2012)

    Article  Google Scholar 

  31. E.B. Buyuk Ogut, Natural convection of water-based nanofluids-in an inclined enclosure with a heat source. Int. J. Therm. Sci. 48, 2063–2073 (2009)

    Article  Google Scholar 

  32. T. Basak, S. Roy, S.K. Singh, I. Pop, Analysis of mixed convection in a lid-driven porous square cavity with linearly heated side wall(s). Int J Heat Mass Transfer 53, 1819–1840 (2010)

    Article  Google Scholar 

  33. A.A. Al-Rashed, G.A. Sheikhzadeh, A. Aghaei, F. Monfared, A. Shahsavar, M. Afrand, Effect of a porous medium on flow and mixed convection heat transfer of nanofluids with variable properties in a trapezoidal enclosure. J. Therm. Anal. Calorim. 139, 741–754 (2020)

    Article  Google Scholar 

  34. E. Colak, Ö. Ekici, H.F. Öztop, Mixed convection in a lid-driven cavity with partially heated porous block. Int. Commun. Heat Mass Transfer 126, 105450 (2021)

    Article  Google Scholar 

  35. M. Tahmasbi, M. Siavashi, H.R. Abbasi, M. Akhlaghi, Mixed convection enhancement by using optimized porous media and nanofluid in a cavity with two rotating cylinders. J. Therm. Anal. Calorim. 141, 1829–1846 (2020)

    Article  Google Scholar 

  36. H.F. Oztop, K. Al-Salem, I. Pop, MHD mixed convection in a lid-driven cavity with corner heater”. Int. J. Heat Mass Transf. 54, 3494–3504 (2011)

    Article  Google Scholar 

  37. T. Mahalakshmi, N. Nithyadevi, H.F. Oztop, Numerical study of magnetohydrodynamic mixed convective flow in a lid-driven enclosure filled with nanofluid saturated porous medium with center heater. Therm. Sci. 23, 1861–1873 (2019)

    Article  Google Scholar 

  38. M.A. Mansour, R.A. Mohamed, M.M. Abd-Elaziz, S.M.  Ahmed, Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid. Int. Commun. Heat Mass Transfer 37, 1504–1512 (2010)

    Article  Google Scholar 

  39. S. Nazari, R. Ellahi, M.M. Sarafraz, M.R. Safaei, A. Asgari, O.A. Akbari, Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J. Therm. Anal. Calorim. 140, 1121–1145 (2020)

    Article  Google Scholar 

  40. H.C. Brinkman, The viscocity of concentrated suspensions and solution. J. Chem. Phys. 20, 571–581 (1952)

    Article  Google Scholar 

  41. R.L. Hamilton, O.K. Grosser, Thermal conductivity of heterogeneous two component system. Ind. Eng. Chem. Fundamen. 1, 187–191 (1962)

    Article  Google Scholar 

  42. T. Islam, N. Parveen, R. Nasrin, Mathematical modeling of unsteady flow with uniform/non-uniform temperature and magnetic intensity in a half-moon shaped domain. Heliyon 8(3), e09015 (2022)

    Article  Google Scholar 

  43. A.M. Rashad, H. Togun, M.A. Mansour, T. Salah, T. Armaghani, Unsteady MHD hybrid nanofluid mixed convection heat transfer in a wavy porous cavity with thermal radiation. J. Therm. Anal. Calorim. 149, 2425–2442 (2024)

    Article  Google Scholar 

  44. F.A. Soomro, R.U. Haq, E.A. Algehyne, I. Tlili, Thermal performance due to magnetohydrodynamics mixed convection flow in a triangular cavity with circular obstacle. J Energy Storage 31, 101702 (2020)

    Article  Google Scholar 

  45. S.S. Shah, R.U. Haq, W. Al-Kouz, Mixed convection analysis in a split lid-driven trapezoidal cavity having elliptic shaped obstacle. Int. Commun. Heat Mass Transfer 126, 105448 (2021)

    Article  Google Scholar 

  46. L. Wang, J. Fan, Nanofluids research: key issues. Nanoscale Res. Lett. 5, 1241–1252 (2010)

    Article  Google Scholar 

  47. R. Löhner, Applied computational fluid dynamics techniques: an introduction based on finite element methods (John Wiley & Sons, New York, 2008)

    Book  Google Scholar 

  48. H.F. Oztop, K. Al-Salem, I. Pop, MHD mixed convection in a lid-driven cavity with corner heater. Int J Heat Mass Transfer 54, 3494–3504 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editors and reviewers for their valuable comments and suggestions.

Funding

There was no external funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarikul Islam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest related to this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akter, H., Parveen, N., Munshi, M.J.H. et al. MHD Mixed Convection of Nanofluid in a Lid-Driven Porous Trapezoidal Cavity with a Heated Obstacle. Multiscale Sci. Eng. (2024). https://doi.org/10.1007/s42493-024-00113-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42493-024-00113-x

Keywords

Navigation