Skip to main content
Log in

Unsteady MHD hybrid nanofluid mixed convection heat transfer in a wavy porous cavity with thermal radiation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current investigation, a (TiO2–Ag/water) hybrid nanofluid (NF), saturated porous medium filled wavy-walled enclosure, and an unstable magneto-mixed convective flow are examined. Heat radiation (Rd) is present with the constant magnetic field (B0), and the cavity, which is partially heated from its bottom wall and cooled from its wavy-left and right walls, contains a square solid block that is solidly surrounded on all sides. The governing PDEs, which are represented in terms of stream function, temperature, and nanoparticle volume percent, are numerically solved using a finite volume technique. It is discovered that as the dimensionless heat source length (B) rises, the streamlines' strength marginally changes while the isotherms in the wavy porous cavity grow increasingly obvious. The results show that increasing the number of undulations and hybrid NF generally produces a higher average Nusselt number when the wave amplitude parameter A = 0.3 and the volume fractions of (TiO2 − Ag/water) Hybrid NF = 0.05. Raising the volume percentage of Hybrid NF enhances the average Nusselt number while increasing the Hartmann number observed happened with decreases the average Nusselt number. One of the primary factors contributing to the production of entropy is the irreversibility of the magnetic force, which leads the isentropic lines to diffuse toward the interior of the enclosure as Ha rises. In comparison with previous case studies, the highest Nusselt number is at λ = 3, and it rises in every case as the wave amplitude parameter and the percentage of hybrid NF volume increase. It was discovered that increasing porosity greatly increased local Nusselt numbers due to improved heat transfer within the enclosure. The lowest local Nusselt number has been determined to be Q = − 2, which represents the heat generation/absorption factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Wave amplitude parameter (m)

b :

Heat source length, (m)

B :

Dimensionless heat source length (T)

\(B_{0}\) :

Magnetic field strength, (T) (N/A m2)

\(C_{{\text{p}}}\) :

Specific heat at constant pressure, (\({\text{J}}\;{\text{kg}}^{ - 1} \;{\text{K}}^{ - 1}\))

D :

Heat source position (m)

D :

Dimensionless heat source position (−)

Da:

Darcy number

H :

Length of cavity, (m)

Ha:

Hartmann number, \(B_{0} H\sqrt {\sigma_{{\text{f}}} /\rho_{{\text{f}}} \nu_{{\text{f}}} }\)

Gr:

Grashof number, \(g\beta_{{\text{f}}} \,H^{3} \Delta T/\upsilon^{2}_{{\text{f}}}\)

G :

Acceleration due to gravity, m s−2)

\(k\) :

Thermal conductivity, (wm1kk1)

Nus :

Local Nusselt number (W m−2 K−1)

\({\text{Nu}}_{{\text{m}}}\) :

Average Nusselt number of heat source (W m−2 K−1)

\(p\) :

Fluid pressure, Pa

\(P\) :

Dimensionless pressure, \(p\,H/\rho_{{{\text{nf}}}} \,\alpha_{{\text{f}}}^{2}\)

\(\Pr\) :

Prandtl number, \(\upsilon_{{\text{f}}} /\alpha_{{\text{f}}}\)

Rd:

Thermal radiation parameter

Re:

Reynolds number, U0H/vf

Q 0 :

Dimensional heat generation/absorption parameter

Q :

Heat generation/absorption factor (Wm2)

T :

Dimensional time, (s)

T :

Temperature, (K)

T c :

Cold wall temperature, (K)

T h :

Heated wall temperature, (K)

U 0 :

Constant speed (m s1)

u, v :

Velocity components in x, y directions, (m s1)

\(U,V\) :

Dimensionless velocity components, (u/U0, v/U0) (−)

\(x,y\) :

Cartesian coordinates, (m)

X, Y :

Dimensionless coordinates, (x/H, y/H) (−)

α :

The cavity inclination angle

\(\alpha_{{{\text{eff}}}}\) :

Effective thermal diffusion, \({\text{m}}^{{2}} \;{\text{s}}^{{ - {1}}}\), \(k/\rho \,c_{{\text{p}}}\)(m2 s1)

\(\beta\) :

Thermal expansion coefficient, (k1)

\(\phi\) :

Solid volume fraction

\(\Phi\) :

Inclination angle of magnetic field

Ε :

Porosity factor

\(\lambda\) :

Undulations number (m)

\(\sigma\) :

Effective electrical conductivity, μS/cm

\(\theta\) :

Dimensionless temperature, (T − Tc)/(Th − Tc)(−)

\(\mu\) :

Dynamic viscosity, (N s m2)

\(\nu\) :

Kinematic viscosity, (\({\text{m}}^{2} \;{\text{s}}^{ - 1}\))

\(\rho\) :

Density, kg m3

\(\tau\) :

Dimensionless of time (−)

Ag:

Silver nanoparticles

Bf:

Base fluid (m3)

\(c\) :

Cold

\(f\) :

Pure fluid

\(h\) :

Hot

\(m\) :

Average

\({\text{nf}}\) :

Nanofluid

\({\text{hnf}}\) :

Hybrid nanofluid

p :

Nanoparticle (nm)

TiOs :

Titanium dioxide

References

  1. Khanafer K, Aithal SM. Mixed convection heat transfer in a lid-driven cavity with a rotating circular cylinder. Int Commun Heat Mass Transf. 2017;86:131–42.

    Google Scholar 

  2. Al-Amiri A, Khanafer K. Fluid–structure interaction analysis of mixed convection heat transfer in a lid-driven cavity with a flexible bottom wall. Int J Heat Mass Transf. 2011;54:3826–36.

    Google Scholar 

  3. Sadeghi MS, Anadalibkhah N, Ghasemiasl R, Armaghani T, Dogonchi AS, Chamkha AJ, Asadi A. On the natural convection of nanofluids in diverse shapes of enclosures: an exhaustive review. J Therm Anal Calorim. 2022;147:1–22.

    CAS  Google Scholar 

  4. Khanafer KM, Chamkha AJ. Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int J Heat Mass Transf. 1999;42(13):2465–81.

    CAS  Google Scholar 

  5. Muhammad R, Khan MI, Jameel M, Khan NB. Fully developed darcyforchheimer mixed convective flow over a curved surface with activation energy and entropy generation. Comput Method Progr Biomed. 2020;188: 105298.

    Google Scholar 

  6. Gao T, Wang Y, Pang Y, Cao J. Hull shape optimization for autonomous underwater vehicles using CFD. Eng Appl Comput Fluid Mech. 2016;10:599–607.

    Google Scholar 

  7. Liu C, et al. Development and validation of a CFD based optimization procedure for the design of torque converter cascade. Eng Appl Comput Fluid Mech. 2019;13:128–41.

    Google Scholar 

  8. Ayoubi Ayoubloo K, Ghalambaz M, Armaghani T, Noghrehabadi A, Chamkha AJ. Pseudoplastic natural convection flow and heat transfer in a cylindrical vertical cavity partially filled with a porous layer. Int J Numer Meth Heat Fluid Flow. 2019;30:1096–114.

    Google Scholar 

  9. Tahar T, Chamkha AJ, Öztop HF, Bouzeroura L. Local thermal non-equilibrium (LTNE) effects on thermal-free convection in a nanofluid-saturated horizontal elliptical non-Darcian porous annulus. Math Comput Simul. 2022;194:124–40.

    MathSciNet  Google Scholar 

  10. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Rana P, Soleimani S. Magnetohydrodynamic free convection of Al2O3 –water nanofluid considering thermophoresis and brownian motion effects. Comput Fluids. 2014;94:147–60.

    MathSciNet  CAS  Google Scholar 

  11. Tahar T. Analysis of the local non-equilibria on the heat transfer and entropy generation during thermal natural convection in a non-Darcy porous medium. Int Commun Heat Mass Trans. 2022;135:106–33.

    Google Scholar 

  12. Alsabery AI, Armaghani T, Chamkha AJ, Sadiq AM, Hashim I. Effects of two-phase nanofluid model on convection in a double lid-driven cavity in the presence of a magnetic field. Int J Numer Meth Heat Fluid Flow. 2018;29:1272–99.

    Google Scholar 

  13. Alsabery AI, Tahar T, Abosinnee AS, Raizah ZA, Chamkha AJ, Ishak H. Impacts of amplitude and local thermal non-equilibrium design on natural convection within nanofluid superposed wavy porous layers. Nanomaterials. 2021;11:1277.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mansour MA, Armaghani T, Chamkha AJ, Rashad AM. Entropy generation and nanofluid mixed convection in a C-shaped cavity with heat corner and inclined magnetic field. Eur Phys J Spec Topics. 2019;228:2619–45.

    ADS  CAS  Google Scholar 

  15. Tahar T, Chamkha AJ. Analysis of the effects of local thermal non-equilibrium (LTNE) on thermo-natural convection in an elliptical annular space separated by a nanofluid-saturated porous sleeve. Int Commun Heat Mass Transf. 2021;129: 105725.

    Google Scholar 

  16. Zhu M, Zhu F, Schmit O. Nano energy for miniaturized system. Nano Mater Sci. 2021;3(2):107–12.

    Google Scholar 

  17. Hag G, Curt S, Wang K, Markides C. Challenges and opportunities for nanomaterials in spectral splitting for high performance hybrid solar photovoltaic thermal applications: a review. Nano Mater Sci. 2020;2(3):183–204.

    Google Scholar 

  18. Ding M, Chen G, Xu W, Jia C, Luo H. Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Mater Sci. 2020;2(3):264–80.

    ADS  Google Scholar 

  19. Dogonchi AS, Tahar T, Karimi N, Chamkha AJ, Alhumade H. Thermal-natural convection and entropy production behavior of hybrid nanoliquid flow under the effects of magnetic field through a porous wavy cavity embodies three circular cylinders. J Taiwan Inst Chem Eng. 2021;124:1–12.

    Google Scholar 

  20. Suresh S, Venkitaraj K, Selvakumar P, Chandrasekar M. Synthesis of Al2O3 -water hybrid nanofluids using two step method and its thermo physical properties. Coll Surf A Physicochem Eng Asp. 2011;388:41–8.

    CAS  Google Scholar 

  21. Krishna MV, Ahammad NA, Chamkha AJ. Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface. Case Stud Therm Eng. 2021;27: 101229.

    Google Scholar 

  22. Aly AM, Mohamed EM, Alsedais N. The magnetic field on a nanofluid flow within a finned cavity containing solid particles. Case Stud Therm Eng. 2021;25: 100945.

    Google Scholar 

  23. Manna NK, Mondal MK, Biswas NA. Novel multi-banding application of magnetic field to convective transport system filled with porous medium and hybrid nanofluid. Phys Scr. 2021;96: 065001.

    ADS  Google Scholar 

  24. Sheikholeslami M, Ganji DD. Three dimensional heat and mass transfer in a rotating system using nanofluid. Powder Technol. 2014;253:789–96.

    CAS  Google Scholar 

  25. Tahar T, Chamkha AJ. Effects of various configurations of an inserted corrugated conductive cylinder on MHD natural convection in a hybrid nanofluid-filled square domain. J Therm Anal Calorim. 2021;143:1399–411.

    Google Scholar 

  26. Ismael MA, Armaghani T, Chamkha AJ. Mixed convection and entropy generation in a lid-driven cavity filled with a hybrid nanofluid and heated by a triangular solid. Heat Transf Res. 2018;49:17.

    Google Scholar 

  27. Tahar T, Öztop HF, Chamkha AJ. MHD natural convection of a CNT-based nanofluid-filled annular circular enclosure with inner heat-generating solid cylinder. Eur Phys J. 2021;136:150.

    Google Scholar 

  28. Goudarzi S, Shekaramiz M, Omidvar A, Golab E, Karimipour A, Karimipour A. Nanoparticles migration due to thermophoresis and brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection. Powder Technol. 2020;375:493–503.

    CAS  Google Scholar 

  29. Izadi M, Mohebbi R, Delouei AA, Sajjadi H. Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields. Int J Mech Sci. 2019;151:154–69.

    Google Scholar 

  30. Hussain S, Tayebi T, Armaghani T, Rashad AM, Nabwey HA. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure. Appl Math Mech. 2022;43:447–66.

    MathSciNet  Google Scholar 

  31. Nabwey HA, Rashad AM, Bala Anki Reddy P, Shaik J, Mansour MA, Salah T. Radiative effects on unsteady MHD natural convection flow in an inclined wavy porous cavity using hybrid nanofluid containing a square obstacle. Alex Eng J. 2023;65(15):921–37.

    Google Scholar 

  32. Ammar IA, Ali SA, Muneer AI, Chamkha AJ, Ishak H. Natural convection inside nanofluid superposed wavy porous layers using LTNE model. Waves Random Complex Media. 2021. https://doi.org/10.1080/17455030.2021.1989519.

    Article  Google Scholar 

  33. Ammar IA, Muneer AI, Engin G, Chamkha AJ, Ishak H. Transient nanofluid flow and energy dissipation from wavy surface using magnetic field and two rotating cylinders. Comput Math Appl. 2021;97:329–43.

    MathSciNet  Google Scholar 

  34. Ammar IA, Muneer AI, Chamkha AJ, Ishak H, Hani A. Unsteady flow and entropy analysis of nanofluids inside cubic porous container holding inserted body and wavy bottom wall. Int J Mech Sci. 2020. https://doi.org/10.1016/j.ijmecsci.2020106161.

    Article  Google Scholar 

  35. Shaik JP, Bala AR, Mansour MA, Rashad AM. Characteristics of moving hot block and non-fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid. Eur Phys J Plus. 2022;137:131.

    CAS  Google Scholar 

  36. Wang AY, Hang X. Highly accurate wavelet-homotopy solutions for mixed convection hybrid nanofluid flow in an inclined square lid-driven cavity. Comput Math Appl. 2022;108:88–108.

    MathSciNet  Google Scholar 

  37. Raizah Z, Aly AM, Alsedais N, Mansour MA. MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition. Sci Rep. 2021;11:17151.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khanafer K, Vafai K, Lighstone M. Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    CAS  Google Scholar 

  39. Brinkman HC. The viscosity of concentrated suspensions and solution. J Chem Phys. 1952;20:571–81.

    ADS  CAS  Google Scholar 

  40. Oztop HF, Abu-Nada E. Numerical study of natural convection in a partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.

    Google Scholar 

  41. Patankar SV. Numerical heat transfer and fluid flow. New York: Hemisphere; 1980.

    Google Scholar 

  42. Maxwell JC. A treatise on electricity and magnetism. 2nd ed. Oxford: Oxford University Press; 1873.

    Google Scholar 

  43. Khanafer KM, Chamkha AJ. Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int J Heat Mass Transf. 1999;31:1354–70.

    Google Scholar 

  44. Iwatsu R, Hyun VK, Kuwahara. Mixed convection in a driven cavity with a stable vertical temperature gradient. Int J Heat Mass Transf. 1993;36:1601–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Armaghani.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashad, A.M., Togun, H., Mansour, M.A. et al. Unsteady MHD hybrid nanofluid mixed convection heat transfer in a wavy porous cavity with thermal radiation. J Therm Anal Calorim 149, 2425–2442 (2024). https://doi.org/10.1007/s10973-023-12690-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12690-4

Keywords

Navigation