Skip to main content
Log in

Machine Learning Enabled Potential for (BA)2(MA)(n−1)PbnI3n+1 2D Ruddlesden–Popper Perovskite Materials

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

Lead-halide organic–inorganic perovskite material has recently been the focus of investigation by numerous research groups due to its favorable properties when employed as an active layer in a wide range of photovoltaic and optoelectronic devices. 2D perovskite layered type was introduced as a solution to the inherent moisture instability of the 3D counterpart, while at the same time enabling the tunability of the aforementioned properties through a spacer to perovskite layer ratio. However, theoretical studies of the layered 2D perovskites have been limited to the density functional level of theory (DFT) due to the lack of reliable force-fields that are necessary to explore the properties of this material observable only on a large scale. In this work, we employed the machine learning enabled Spectral Neighbor Analysis Potential (SNAP) to obtain the quantum accurate description of energies and forces in 2D layered Ruddlesden–Popper perovskite material, with butylammonium (BA) molecule included as a spacer. The trained SNAP potential reproduces both energies and forces of the reference atomic configurations with high fidelity and comparable with DFT calculations. Furthermore, the potential is stable at both 300 and 400 K which is verified for the first five 2D perovskite members under the canonical ensemble in bulk phase for 0.5 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The SNAP potential file, and respective LAMMPS input scripts and data files are available from the repository https://github.com/CNNLSinica/2D_perov_SNAP.

References

  1. S. De Wolf et al., Organometallic Halide Perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014)

    Article  PubMed  Google Scholar 

  2. Q. Dong et al., Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 1979(347), 967–970 (2015)

    Article  ADS  Google Scholar 

  3. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)

    Article  PubMed  CAS  Google Scholar 

  4. D.W. de Quilettes et al., Impact of microstructure on local carrier lifetime in perovskite solar cells. Science (1979) 348, 683–686 (2015)

    Google Scholar 

  5. W.-J. Yin, T. Shi, Y. Yan, Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014)

    Article  PubMed  CAS  Google Scholar 

  6. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    Article  ADS  PubMed  CAS  Google Scholar 

  7. G. Pacchioni, Highly efficient perovskite LEDs. Nat. Rev. Mater. 6, 108 (2021)

    Article  ADS  CAS  Google Scholar 

  8. L. Li et al., Recent advances in perovskite photodetectors for image sensing. Small 17, 2005606 (2021)

    Article  CAS  Google Scholar 

  9. J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020)

    Article  PubMed  CAS  Google Scholar 

  10. T. Wu et al., The main progress of perovskite solar cells in 2020–2021. Nanomicro Lett 13, 152 (2021)

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  11. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  PubMed  CAS  Google Scholar 

  12. H. Min et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021)

    Article  ADS  PubMed  CAS  Google Scholar 

  13. J. Yan, T.J. Savenije, L. Mazzarella, O. Isabella, Progress and challenges on scaling up of perovskite solar cell technology. Sustain Energy Fuels 6, 243–266 (2022)

    Article  CAS  Google Scholar 

  14. J.M. Frost et al., Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  15. E. Mosconi, J.M. Azpiroz, F. De Angelis, Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem. Mater. 27, 4885–4892 (2015)

    Article  CAS  Google Scholar 

  16. C. Zheng, O. Rubel, Unraveling the water degradation mechanism of CH3NH3PbI3. J. Phys. Chem. C 123, 19385–19394 (2019)

    Article  CAS  Google Scholar 

  17. Z.-Q. Ma, Y. Shao, P.K. Wong, X. Shi, H. Pan, Structural and electronic properties of two-dimensional organic–inorganic halide perovskites and their stability against moisture. J. Phys. Chem. C 122, 5844–5853 (2018)

    Article  CAS  Google Scholar 

  18. C. Katan, N. Mercier, J. Even, Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119, 3140–3192 (2019)

    Article  PubMed  CAS  Google Scholar 

  19. C.C. Stoumpos et al., Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016)

    Article  CAS  Google Scholar 

  20. D.B. Mitzi, Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc. Dalton Trans. (2001). https://doi.org/10.1039/B007070J

    Article  Google Scholar 

  21. K. Tanaka et al., Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3PbI3. Solid State Commun. 127, 619–623 (2003)

    Article  ADS  CAS  Google Scholar 

  22. X. Hong, T. Ishihara, A.V. Nurmikko, Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 45, 6961–6964 (1992)

    Article  ADS  CAS  Google Scholar 

  23. E.A. Muljarov, S.G. Tikhodeev, N.A. Gippius, T. Ishihara, Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds. Phys. Rev. B 51, 14370–14378 (1995)

    Article  ADS  CAS  Google Scholar 

  24. I.B. Koutselas, L. Ducasse, G.C. Papavassiliou, Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units. J. Phys.: Condens. Matter 8, 1217–1227 (1996)

    ADS  CAS  Google Scholar 

  25. J.-C. Blancon et al., Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. C.M. Raghavan et al., Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-popper perovskite single crystals. Nano Lett. 18, 3221–3228 (2018)

    Article  ADS  PubMed  CAS  Google Scholar 

  27. P.K. Roy et al., Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods. Nanoscale 12, 18269–18277 (2020)

    Article  PubMed  CAS  Google Scholar 

  28. Z. Tan et al., Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector. J. Am. Chem. Soc. 138, 16612–16615 (2016)

    Article  PubMed  CAS  Google Scholar 

  29. F. Yuan et al., Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Sci. Adv. 6, eabb0253 (2022)

    Article  ADS  Google Scholar 

  30. I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. 126, 11414–11417 (2014)

    Article  ADS  Google Scholar 

  31. H. Tsai et al., High-efficiency two-dimensional Ruddlesden-popper perovskite solar cells. Nature 536, 312–317 (2016)

    Article  ADS  PubMed  CAS  Google Scholar 

  32. G. Wu et al., Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%. Matter 4, 582–599 (2021)

    Article  CAS  Google Scholar 

  33. S. Sidhik et al., Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 1979(377), 1425–1430 (2022)

    Article  ADS  Google Scholar 

  34. A. Mattoni, A. Filippetti, M.I. Saba, P. Delugas, Methylammonium rotational dynamics in lead halide perovskite by classical molecular dynamics: the role of temperature. J. Phys. Chem. C 119, 17421–17428 (2015)

    Article  CAS  Google Scholar 

  35. T. Hata, G. Giorgi, K. Yamashita, C. Caddeo, A. Mattoni, Development of a classical interatomic potential for MAPbBr3. J. Phys. Chem. C 121, 3724–3733 (2017)

    Article  CAS  Google Scholar 

  36. S.S.I. Almishal, O. Rashwan, New accurate molecular dynamics potential function to model the phase transformation of cesium lead triiodide perovskite (CsPbI3). RSC Adv. 10, 44503–44511 (2020)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  37. C.M. Handley, C.L. Freeman, A new potential for methylammonium lead iodide. Phys. Chem. Chem. Phys. 19, 2313–2321 (2017)

    Article  PubMed  CAS  Google Scholar 

  38. M.B. Fridriksson, S. Maheshwari, F.C. Grozema, Structural dynamics of two-dimensional Ruddlesden-popper perovskites: a computational study. J. Phys. Chem. C 124, 22096–22104 (2020)

    Article  CAS  Google Scholar 

  39. H.-A. Chen, C.-W. Pao, Fast and accurate artificial neural network potential model for MAPbI3 perovskite materials. ACS Omega 4, 10950–10959 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, G.J. Tucker, Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  41. M.A. Wood, A.P. Thompson, Extending the accuracy of the SNAP interatomic potential form. J. Chem. Phys. 148, 241721 (2018)

    Article  ADS  PubMed  Google Scholar 

  42. D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015)

    Article  PubMed  CAS  Google Scholar 

  43. C.C. Stoumpos et al., High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem 2, 427–440 (2017)

    Article  CAS  Google Scholar 

  44. C.M. Myae Soe et al., Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc Natl Acad Sci U S A 116, 58–66 (2019)

    Article  ADS  CAS  Google Scholar 

  45. A.P. Bartók, R. Kondor, G. Csányi, On representing chemical environments. Phys. Rev. B 87, 184115 (2013)

    Article  ADS  Google Scholar 

  46. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010)

    Article  ADS  PubMed  Google Scholar 

  47. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)

    Book  Google Scholar 

  48. A.V. Meremianin, Multipole expansions in four-dimensional hyperspherical harmonics. J. Phys. A 39, 3099–3112 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  49. D.B. Mitzi, Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8, 791–800 (1996)

    Article  CAS  Google Scholar 

  50. C.C. Stoumpos et al., SI_Ruddlesden-Popper hybrid lead iodide perovskite homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016)

    Article  CAS  Google Scholar 

  51. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  CAS  Google Scholar 

  52. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  53. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  PubMed  CAS  Google Scholar 

  54. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  55. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  CAS  Google Scholar 

  56. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  ADS  PubMed  Google Scholar 

  57. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011)

    Article  PubMed  CAS  Google Scholar 

  58. A.P. Thompson et al., LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022)

    Article  CAS  Google Scholar 

  59. L.P. Swiler, M.S. Eldred, B.M. Adams, Dakota: bridging advanced scalable uncertainty quantification algorithms with production deployment, in Handbook of Uncertainty Quantification. ed. by R. Ghanem, D. Higdon, H. Owhadi (Springer International Publishing, Cham, 2017), pp.1651–1693

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Academia Sinica Investigator Award (Grant No. AS-IA-112-M05), and the National Science and Technology Council, Taiwan (Grant Nos. 108-2112-M-001-024-MY3, 111-2112-M-001-085-MY3, and 111-2124-M-001-001-) for funding support. We would also like to thank the National Center for High-Performance Computing, Taiwan for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wei Pao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 20713 KB)

Supplementary file2 (MP4 20776 KB)

Supplementary file3 (MP4 20434 KB)

Supplementary file4 (MP4 20400 KB)

Supplementary file5 (MP4 20480 KB)

Supplementary file6 (MP4 20507 KB)

Supplementary file7 (MP4 20519 KB)

Supplementary file8 (MP4 20553 KB)

Supplementary file9 (MP4 20440 KB)

Supplementary file10 (MP4 20569 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najman, S., Yang, PY. & Pao, CW. Machine Learning Enabled Potential for (BA)2(MA)(n−1)PbnI3n+1 2D Ruddlesden–Popper Perovskite Materials. Multiscale Sci. Eng. (2024). https://doi.org/10.1007/s42493-024-00108-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42493-024-00108-8

Keywords

Navigation