Skip to main content

Advertisement

Log in

Structural and Electronic Properties of Intertwined Defect in Ruddlesden–Popper 2D Perovskites Study Using Density Functional Theory Calculations

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

The lead halide perovskite material has recently drawn significant attention from the scientific community and has been employed as an active layer material for optoelectronic devices with a wide range of applications. Notably, in recent years, organic inorganic lead halide perovskite solar cell devices have reached power conversion efficiencies rivaling those of silicon-based ones. However, to this date environmental stability of these active layer materials has not yet been fully resolved, thereby hindering their commercialization. Recently, the 2D layered Ruddlesden–Popper type perovskite, has emerged as a possible alternative owing to its enhanced stability against the elements. However, despite of this advantage, devices employing this material have not yet matched the efficiency of their 3D counterparts, which can be explained by the possible presence of structural defects. The intertwined defects of 2D perovskites have been reported from experiments; however, there have been no detailed studies on the impacts of these intertwined defects on 2D perovskite. In this work, we performed series of large-scale ab-initio calculations of the intertwined structures and computed the formation energies of n = 1, n = 2 and n = 3 members. Decreasing intertwined structure formation energy with increasing 2D perovskite principle number implies higher stability of intertwined structures with increasing number of inorganic layers, which is consistent with experimental observations. Band structure calculations reveal flat dispersion curves along the a and c directions in the real space, indicating that the exciton transfer is confined to one direction. Hence, the present study revealed the stability of the intertwined defects and their potential impacts to the device performance, suggesting that careful control of the number of principle members is critical for preventing the formation of intertwined structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  Google Scholar 

  2. S. Sun et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7(1), 399–407 (2014)

    Article  Google Scholar 

  3. S.D. Stranks et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science (80-.) 342(6156), 341–344 (2013)

    Article  Google Scholar 

  4. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014)

    Article  Google Scholar 

  5. W.-J. Yin, T. Shi, Y. Yan, Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26(27), 4653–4658 (2014)

    Article  Google Scholar 

  6. NREL. [Online]. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 2021

  7. J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14(5), 2584–2590 (2014)

    Article  Google Scholar 

  8. Y. Han et al., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3(15), 8139–8147 (2015)

    Article  Google Scholar 

  9. Q. Fu et al., Recent progress on the long-term stability of perovskite solar cells. Adv. Sci. 5(5), 1700387 (2018)

    Article  Google Scholar 

  10. H. Tsai et al., High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature 536(7616), 312–317 (2016)

    Article  Google Scholar 

  11. J.-C. Blancon et al., Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9(1), 2254 (2018)

    Article  Google Scholar 

  12. C.C. Stoumpos et al., SI_Ruddlesden-Popper hybrid lead iodide perovskite homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016)

    Article  Google Scholar 

  13. M. Saba, F. Quochi, A. Mura, G. Bongiovanni, Excited state properties of hybrid perovskites. Acc. Chem. Res. 49(1), 166–173 (2016)

    Article  Google Scholar 

  14. N. Wang et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10(11), 699–704 (2016)

    Article  Google Scholar 

  15. L.N. Quan et al., Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17(6), 3701–3709 (2017)

    Article  Google Scholar 

  16. D. Liang et al., Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10(7), 6897–6904 (2016)

    Article  Google Scholar 

  17. S. Han et al., Exploring a polar two-dimensional multi-layered hybrid perovskite of (C5H11NH3)2(CH3NH3)Pb2I7 for ultrafast-responding photodetection. Laser Photon. Rev. 12(8), 1800060 (2018)

    Article  Google Scholar 

  18. C.M. Raghavan et al., Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden–Popper perovskite single crystals. Nano Lett. 18(5), 3221–3228 (2018)

    Article  Google Scholar 

  19. C.C. Stoumpos et al., High members of the 2D Ruddlesden–Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem 2(3), 427–440 (2017)

    Article  Google Scholar 

  20. D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137(24), 7843–7850 (2015)

    Article  Google Scholar 

  21. C.M.M. Soe et al., Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl. Acad. Sci. 116(1), 58–66 (2019)

    Article  Google Scholar 

  22. S.S. MacKinnon, A. Malevanets, S.J. Wodak, Intertwined associations in structures of homooligomeric proteins. Structure 21(4), 638–649 (2013)

    Article  Google Scholar 

  23. J. Lawrance, T. Gutu, D. McClain, J. Wu, J. Jiao, High yield growth of various CdS nano-structures and their electron field emission behavior. MRS Proc. 963, 916–963 (2006)

    Article  Google Scholar 

  24. M.E. Kamminga et al., Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 28(13), 4554–4562 (2016)

    Article  Google Scholar 

  25. C.C. Stoumpos et al., Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016)

    Article  Google Scholar 

  26. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  27. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  28. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)

    Article  Google Scholar 

  29. M. Hutchinson, M. Widom, VASP on a GPU: application to exact-exchange calculations of the stability of elemental boron. Comput. Phys. Commun. 183(7), 1422–1426 (2012)

    Article  Google Scholar 

  30. M. Hacene, A. Anciaux-Sedrakian, X. Rozanska, D. Klahr, T. Guignon, P. Fleurat-Lessard, Accelerating VASP electronic structure calculations using graphic processing units. J. Comput. Chem. 33(32), 2581–2589 (2012)

    Article  Google Scholar 

  31. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)

    Article  Google Scholar 

  32. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)

    Article  Google Scholar 

  33. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  Google Scholar 

  34. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011)

    Article  Google Scholar 

  35. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010)

    Article  Google Scholar 

  36. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976)

    Article  MathSciNet  Google Scholar 

  37. Y. Yang, F. Gao, S. Gao, S.-H. Wei, Origin of the stability of two-dimensional perovskites: a first-principles study. J. Mater. Chem. A 6(30), 14949–14955 (2018)

    Article  Google Scholar 

  38. S. Najman, H.-A. Chen, H.-Y.T. Chen, C.-W. Pao, Surface structures and equilibrium shapes of layered 2D Ruddlesden–Popper perovskite crystals from density functional theory calculations. Mater. Today Commun. 26, 101745 (2020)

    Article  Google Scholar 

  39. D. Ma, Z. Xu, F. Wang, X. Deng, Syntheses of two-dimensional propylammonium lead halide perovskite microstructures by a solution route. CrystEngComm 21(9), 1458–1465 (2019)

    Article  Google Scholar 

  40. H.A. Chen, C.W. Pao, Fast and accurate artificial neural network potential model for MAPbI3 perovskite materials. ACS Omega 4(6), 10950–10959 (2019)

    Article  Google Scholar 

  41. Y.-X. Wang, H.-A. Chen, C.-W. Pao, C.-C. Chang, Artificial neural network model for atomistic simulations of Sb/MoS2 van der Waals heterostructures. Multiscale Sci. Eng. 1(2), 119–129 (2019)

    Article  Google Scholar 

  42. L. Yang, H.Y. He, B.C. Pan, Theoretical prediction of new carbon allotropes. J. Chem. Phys. 138(2), 24502 (2013)

    Article  Google Scholar 

  43. P. Rivero, W. Shelton, V. Meunier, Surface properties of hydrogenated diamond in the presence of adsorbates: a hybrid functional DFT study. Carbon N. Y. 110, 469–479 (2016)

    Article  Google Scholar 

  44. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003)

    Article  Google Scholar 

  45. Z. Xiao et al., Photovoltaic properties of two-dimensional (CH3NH3)2Pb(SCN)2I2 perovskite: a combined experimental and density functional theory study. J. Phys. Chem. Lett. 7(7), 1213–1218 (2016)

    Article  Google Scholar 

  46. J. Even, L. Pedesseau, J.-M. Jancu, C. Katan, Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4(17), 2999–3005 (2013)

    Article  Google Scholar 

  47. S.M. Alay-e-Abbas, S. Nazir, S. Cottenier, A. Shaukat, Evaluation of thermodynamics, formation energetics and electronic properties of vacancy defects in CaZrO3. Sci. Rep. 7(1), 8439 (2017)

    Article  Google Scholar 

  48. F. Brivio, A.B. Walker, A. Walsh, Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1(4), 42111 (2013)

    Article  Google Scholar 

  49. D. Wang, B. Wen, Y.-N. Zhu, C.-J. Tong, Z.-K. Tang, L.-M. Liu, First-principles study of novel two-dimensional (C4H9NH3)2PbX4 perovskites for solar cell absorbers. J. Phys. Chem. Lett. 8(4), 876–883 (2017)

    Article  Google Scholar 

Download references

Funding

We thank Academia Sinica Career Development Award (Grant 2317-1050100), Academia Sinica Sustainability Science Project (Grant AS-SS-106-02-4), and the Ministry of Science and Technology, Taiwan (Grants 108-2112-M001-024-MY3) for financial support and the National Center for High-performance Computing for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wei Pao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najman, S., Chen, HA., Chen, HY.T. et al. Structural and Electronic Properties of Intertwined Defect in Ruddlesden–Popper 2D Perovskites Study Using Density Functional Theory Calculations. Multiscale Sci. Eng. 3, 205–215 (2021). https://doi.org/10.1007/s42493-021-00070-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-021-00070-9

Keywords

Navigation