Skip to main content
Log in

Computation of photovoltaic and stability properties of hybrid organic–inorganic perovskites via convolutional neural networks

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Hybrid organic–inorganic perovskites (HOIPs) have gained considerable interest due to their potential applications as photovoltaic materials. Nevertheless, several issues have to be solved on this matter, such as the proper tuning of band gaps and those concerning stability, before these systems can realise their full potential. Here, we used deep learning techniques, more specifically crystal graph neural networks (Xie & Grossman, Phys. Rev. Let., 2018, 120), abbreviated as CGNN, to explore the chemical space of HOIPs and to address the above mentioned difficulties. We trained this CGNN with a data set comprised of 1346 density functional theory calculations and used it to compute band gaps, refractive indexes, atomisation energies, volumes of unit cells and volumetric densities of 3840 HOIPs. Our screening method permits a rapid selection of perovskites with suitable optoelectronic properties and only 7 have an adequate band gap to be used in photovoltaic technologies. The composition, ABX\(_3\), of such perovskites is mainly of small molecular cations such as A = \(\mathrm {[NH_4]^+}\), \(\mathrm {[NH_2NH_3]^+}\) together with \(\mathrm {[OHNH_3]^+}\), B = \(\mathrm {In^2+}\), \(\mathrm {Zr^2+}\) along with \(\mathrm {Sn^2+}\), and X = I\(^-\). The consideration of further systems indicates that the occurrence of phosphorus and sulphur in the molecular cation diminishes strongly the band gap of the perovskite. We also considered the stability of the systems with optimal band gaps with respect to their degradation in simple organic and inorganic salts. Overall, our investigation shows how deep learning techniques can be exploited to achieve a rapid screening of potential photovoltaic materials in terms of their electronic properties and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lawrence MG, Schäfer S, Muri H, Scott V, Oschlies A, Vaughan NE, Boucher O, Schmidt H, Haywood J, Scheffran J (2018) Nat. Commun. 9:3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu Y, Ramanathan V, Victor DG (2018) Nature 564:30–32

    Article  CAS  PubMed  Google Scholar 

  3. Stokes LC, Warshaw C (2017) Nat. Energy 2:17107

    Article  Google Scholar 

  4. Lewis NS, Nocera DG (2006) Proc. Natl. Acad. Sci. USA 103:15729–15735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crabtree GW, Lewis NS (2007) Phys. Today 60:37–42

    Article  CAS  Google Scholar 

  6. Lazard Ltd - Financial advisory, asset management firm, Levelized Cost Of Energy, Levelized Cost Of Storage, and Levelized Cost Of Hydrogen 2020, Retrieved on Oct 18th, 2021. https://www.lazard.com/perspective/levelized-cost-of-energy-levelized-cost-of-storage-and-levelized-cost-of-hydrogen-2020/

  7. Wang R, Mujahid M, Duan Y, Wang Z-K, Xue J, Yang Y (2019) Adv. Funct. Mater. 29:1808843

    Article  CAS  Google Scholar 

  8. Jošt M, Kegelmann L, Korte L, Albrecht S (2020) Adv. Energy Mater. 10:1904102

    Article  CAS  Google Scholar 

  9. Wolf SD, Holovsky J, Moon S-J, Löper P, Niesen B, Ledinsky M, Haug F-J, Yum J-H, Ballif C (2014) J. Phys. Chem. Lett. 5:1035–1039

    Article  CAS  PubMed  Google Scholar 

  10. Popelier PLA (2015) Int. J. Quantum Chem. 115:1005–1011

    Article  CAS  Google Scholar 

  11. Botu V, Batra R, Chapman J, Ramprasad R (2016) J. Phys. Chem. C 121:511–522

    Article  CAS  Google Scholar 

  12. McDonagh JL, Silva AF, Vincent MA, Popelier PLA (2017) J. Chem. Theory Comput. 14:216–224

    Article  CAS  PubMed  Google Scholar 

  13. Margraf JT, Reuter K (2018) J. Phys. Chem. A 122:6343–6348

    Article  CAS  PubMed  Google Scholar 

  14. Kayala MA, Azencott C-A, Chen JH, Baldi P (2011) J. Chem. Inf. Model. 51:2209–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kayala MA, Baldi P (2012) J. Chem. Inf. Model. 52:2526–2540

    Article  CAS  PubMed  Google Scholar 

  16. Segler MHS, Waller MP (2017) Chem. Eur. J. 23:5966–5971

    Article  CAS  PubMed  Google Scholar 

  17. Kitchin JR (2018) Nat. Catal. 1:230–232

    Article  Google Scholar 

  18. Bonk BM, Weis JW, Tidor B (2019) J. Am. Chem. Soc. 141:4108–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sánchez-Lengeling B, Aspuru-Guzik A (2018) Science 361:360–365

    Article  CAS  PubMed  Google Scholar 

  20. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Nature 559:547–555

    Article  CAS  PubMed  Google Scholar 

  21. Schütt KT, Gastegger M, Tkatchenko A, Müller K-R, Maurer RJ (2019) Nat. Commun. 10:5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Balachandran PV, Kowalski B, Sehirlioglu A, Lookman T (2018) Nat. Commun 9:1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang S, Lu T, Xu P, Tao Q, Li M, Lu W (2021) J. Phys. Chem. Lett. 12:7423–7430 (PMID: 34337946)

    Article  CAS  PubMed  Google Scholar 

  24. Lyu R, Moore CE, Liu T, Yu Y, Wu Y (2021) J. Am. Chem. Soc. 143:12766–12776 (PMID: 34357756)

    Article  CAS  PubMed  Google Scholar 

  25. Im J, Lee S, Ko T-W, Kim HW, Hyon Y, Chang H (2019) npj Comput. Mater. 5:37

    Article  CAS  Google Scholar 

  26. Gladkikh V, Kim DY, Hajibabaei A, Jana A, Myung CW, Kim KS (2020) J. Phys. Chem. C 124:8905–8918

    Article  CAS  Google Scholar 

  27. Kim C, Pilania G, Ramprasad R (2016) J. Phys. Chem. 120:14575–14580

    CAS  Google Scholar 

  28. Zhang Y, Xu X (2021) Int. J. Quantum Chem. 121:e26480

    CAS  Google Scholar 

  29. Pilania G, Mannodi-Kanakkithodi A, Uberuaga BP, Ramprasad R, Gubernatis JE, Lookman T (2016) Sci. Rep. 6:19375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q, Wang J (2018) Nat. Commun. 9:3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Y. Zhuo, A. Mansouri Tehrani, J. Brgoch, J. Phys. Chem. Lett. 2018, 9, 1668–1673

  32. Xie T, Grossman JC (2018) Phys. Rev. Lett. 120:145301

    Article  CAS  PubMed  Google Scholar 

  33. Dey P, Bible J, Datta S, Broderick S, Jasinski J, Sunkara M, Menon M, Rajan K (2014) Comput. Mater. Sci. 83:185–195

    Article  CAS  Google Scholar 

  34. Lee J, Seko A, Shitara K, Nakayama K, Tanaka I (2016) Phys. Rev. B 93:115104

    Article  CAS  Google Scholar 

  35. Saidi WA, Shadid W, Castelli IE (2020) npj Comput. Mater. 6:36

    Article  CAS  Google Scholar 

  36. Kim C, Huan TD, Krishnan S, Ramprasad R (2017) Sci. Data 4:170057

    Article  PubMed  PubMed Central  Google Scholar 

  37. IBM Cloud Education, Machine Learning, 2020, Retrieved on Oct 18th, 2021. https://www.ibm.com/cloud/learn/machine-learning

  38. Perdew JP, Burke K, Ernzerhof M (1996) Phys. Rev. Lett. 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  39. ...Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J. Phys. Condens. Matter 21:395502

    Article  PubMed  Google Scholar 

  40. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, J. Phys. Condens. Matter 2017, 29, 465901

  41. Giannozzi P, Baseggio O, Bonfà P, Brunato D, Car R, Carnimeo I, Cavazzoni C, de Gironcoli S, Delugas P, Ruffino FF, Ferretti A, Marzari N, Timrov I, Urru A, Baroni S (2020) J. Chem. Phys. 152:154105

    Article  CAS  PubMed  Google Scholar 

  42. Juhás P, Louwen JN, van Eijck L, Vogt ETC, Billinge SJL (2018) J. Appl. Cryst. 51:1492–1497

    Article  Google Scholar 

  43. Juhás P, Farrow CL, Yang X, Knox KR, Billinge SJL (2015) Acta Cryst. 71:562–568

    Google Scholar 

  44. Granlund L, Billinge SJL, Duxbury PM (2015) Acta Cryst. 71:392–409

    CAS  Google Scholar 

  45. Juhás P, Davis T, Farrow CL, Billinge SJL (2013) J. Appl. Cryst. 46:560–566

    Article  CAS  Google Scholar 

  46. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) APL Materials 1:011002

    Article  CAS  Google Scholar 

  47. M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. Krishna Ande, S. van der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson, M. Asta, Scientific Data 2015, 2

  48. M. de Jong, W. Chen, H. Geerlings, M. Asta, K. A. Persson, Scientific Data 2015, 2

  49. materialsproject.org, Retrieved on Oct 18th, 2021. https://materialsproject.org

  50. Eperon GE, Leijtens T, Bush KA, Prasanna R, Green T, Wang JT-W, McMeekin DP, Volonakis G, Milot RL, May R, Palmstrom A, Slotcavage DJ, Belisle RA, Patel JB, Parrott ES, Sutton RJ, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H-G, Bent S, Giustino F, Herz LM, Johnston MB, McGehee MD, Snaith HJ (2016) Science 354:861–865

    Article  CAS  PubMed  Google Scholar 

  51. Syzgantseva MA, Syzgantseva OA (2019) Theor. Chem. Acc. 138:52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from CONACyT/Mexico (grant 596648/738983). We are also thankful to DGTIC-UNAM (grant LANCAT-UNAM-DGTIC-250) for computer time and AMP is grateful to Spanish MICINN for funding (grant PGC2018-095953-B-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Rocha-Rinza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristizabal-Ferreira, V.A., Guevara-Vela, J.M., Sauza-de la Vega, A. et al. Computation of photovoltaic and stability properties of hybrid organic–inorganic perovskites via convolutional neural networks. Theor Chem Acc 141, 19 (2022). https://doi.org/10.1007/s00214-022-02875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02875-9

Keywords

Navigation