Skip to main content
Log in

Strategies for Recycling of Primary and Secondary Resources for Germanium Extraction

  • Review
  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

In this review, availability of germanium in primary and secondary resources and its recovery from these resources are presented. With nearly 40% germanium consumed in fiber optics and scarcity of resources, the global consumption outplays the primary production. Germanium exists as a substituted element in zinc sulfide matrix of lead–zinc sulfides and lignites. Nearly 60% of the germanium supply is met by zinc refining residues, and about 20–30% of germanium is produced from coal and its by-products. Germanium recovery from various resources such as zinc plant residues, coal and coal plant waste, spent optical fibers, and copper flue dust has been examined. Bioleaching was exploited by few researchers to extract germanium from zinc sulfides, sulfide tailings, jarosite, coal fly ash, and flue dust. This review covers the various work carried out by different chemical separation processes, viz., chemical precipitation, solvent extraction (SX), ion exchange (IX), and membrane processes, as well as biological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arroyo F, Fernández-Pereira C (2008) Hydrometallurgical recovery of germanium from coal gasification fly ash: solvent extraction method. Ind Eng Chem Res 47:3186–3191. https://doi.org/10.1021/ie7016948

    Article  Google Scholar 

  2. Habashi F (2013) Germanium, physical and chemical properties. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of Metalloproteins. Springer, New York

    Google Scholar 

  3. Thomas CL (2016) Germanium. In: U.S. Geological Survey Minerals Yearbook. pp 30.1–30.7

  4. Shanks WCP, Kimball BE, Tolcin AC, Guberman DE (2017) Germanium and indium. In: Schulz KJ, DeYoung JH, Seal RR, Bradley DC (Eds) Critical mineral resources of the United States—economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802. pp I1–I27

  5. Brown RD (2002) Germanium. United States Geological Survey, Mineral Commodity Summaries, January 2002, pp 70–71

  6. Butterman WC, Jorgenson JD (2005) Germanium. USGS Open- File Report 2004–1218, 19 pp. http://pubs.usgs.gov/of/2004/1218/2004-1218.pdf

  7. Höll R, Kling M, Schroll E (2007) Metallogenesis of germanium – a review. Ore Geol Rev 30:145–180. https://doi.org/10.1016/j.oregeorev.2005.07.034

    Article  Google Scholar 

  8. USGS (2020) Mineral Commodity Summaries, January 2020, pp 68–69

  9. Ruiz AG, Sola PC, Palmerola NM (2018) Germanium: current and novel recovery processes. In: S Lee (Eds) Advanced Material and Device Applications with Germanium. Intech Open. https://doi.org/10.5772/intechopen.77997

  10. Frenzel M, Ketris MP, Gutzmer J (2014) On the geological availability of germanium. Miner Deposita 49:471–486. https://doi.org/10.1007/s00126-013-0506-z

    Article  Google Scholar 

  11. Curtolo DC, Friedrich S, Friedrich B (2017) High Purity germanium, a review on principle theories and technical production methodologies. J Crystall Process Technol 7:65–84. https://doi.org/10.4236/jcpt.2017.74005

    Article  Google Scholar 

  12. Zheng J, Yang L, Deng Y, Zhang C, Zhang Y, Xiong S, Ding C, Zhao J, Liao C, Gong D (2020) A review of public and environmental consequences of organic germanium. Crit Rev Environ Sci Technol 50(13):1384–1409. https://doi.org/10.1080/10643389.2019.1661175

    Article  Google Scholar 

  13. Dobrzynski D, Boguszewska CA, Sugimori K (2018) Hydrogeochemical and biomedical insights into germanium potential of curative waters: a case study of health resorts in the Sudetes Mountains (Poland). Environ Geochem Health 40(4):1355–1375. https://doi.org/10.1007/s10653-017-0061-0

    Article  Google Scholar 

  14. Kul M, Topkaya Y (2008) Recovery of germanium and other valuable metals from zinc plant residues. Hydrometallurgy 92:87–94. https://doi.org/10.1016/j.hydromet.2007.11.004

    Article  Google Scholar 

  15. Torma AE, Jiang H (1991) Extraction processes for gallium and germanium. Miner Process Extrac Metall Rev 7:235–258. https://doi.org/10.1080/08827509108952673

    Article  Google Scholar 

  16. Liu FP, Liu ZH, Li YH, Liu ZY, Li QH (2016) Sulfuric leaching process of zinc powder replacement residue containing gallium and germanium. Chin J Nonferrous Metals 26:908–916

    Google Scholar 

  17. Liu FP, Liu ZH, Li YH, Liu ZY, Li QH (2016) Extraction of gallium and germanium from zinc refinery residues by pressure acid leaching. Hydrometallurgy 164:313–320. https://doi.org/10.1016/j.minpro.2017.04.005

    Article  Google Scholar 

  18. Drzazga M, Prajsnar R, Chmielarz A, Benke G, Leszczyńska-Sejda K, Ciszewski M, Bilewska K, Krawiec G (2018) Germanium and Indium recovery from zinc metallurgy by –products- dross leaching in sulphuric and oxalic acids. Metals 8:1041. https://doi.org/10.3390/met8121041

    Article  Google Scholar 

  19. Harbuck DD, Judd JC, Behunin DV (1991) Germanium solvent extraction from sulfuric acid solutions and co-extraction of germanium and gallium. Solv Extrac Ion Exch 9(3):383–401. https://doi.org/10.1080/07366299108918060

    Article  Google Scholar 

  20. Turan MD, Altundoğan HS, Tümen F (2004) Recovery of zinc and lead from zinc plant residue. Hydrometallurgy 75(1–4):169–176. https://doi.org/10.1016/j.hydromet.2004.07.008

    Article  Google Scholar 

  21. Liu F, Liu Z, Li Y, Wilson BP, Lundström M (2017) Extraction of Ga and Ge from zinc refinery residues in H2C2O4 solutions containing H2O2. Int J Miner Process 163:14–23. https://doi.org/10.1016/j.minpro.2017.04.005

    Article  Google Scholar 

  22. Torralvo FA, Fernández-Pereira C, Villard EG, Luna Y, Leiva C, Vilches L, Villegas R (2018) Low environmental impact process for germanium recovery from an industrial residue. Miner Engg 128:106–114. https://doi.org/10.1016/j.mineng.2018.07.022

    Article  Google Scholar 

  23. Jiang T, Liu Z (2018) Research on the behavior of germanium in the leaching process of germanium –bearing zinc oxide by sulfuric acid. In: B Davis et al. (Eds) The Minerals, Metals and Materials Society 2018, Extraction 2018, The Minerals, Metals & Materials Series, pp 2493–2503

  24. Jiang T, Zhang T, Ye F, Liu Z (2019) Occurrence state and sulfuric-acid leaching behavior of germanium in secondary zinc oxide. Miner Engg 137:334–343. https://doi.org/10.1016/j.mineng.2019.04.020

    Article  Google Scholar 

  25. Liu F, Liu Z, Li Y, Wilson BP, Lundström M (2017) Behavior of gallium and germanium associated with zinc sulfide concentrate in oxygen pressure leaching. Physicochem Probl Miner Process 53(2):1047–1060. https://doi.org/10.5277/ppmp170229

    Article  Google Scholar 

  26. Topkaya YA, Karakaya I, Özbayoğlu G (1992) Potential recovery of germanium from leach residues and electrolyte purification precipitates of Turkish zinc plant. Miner Process Extrac Metall Rev 10:281–289. https://doi.org/10.1080/08827509208914091

    Article  Google Scholar 

  27. Li CX, Wei C, Xu H, Deng Z, Liao J, Li X, Li M (2012) Recovery of valuable metals from zinc plant residues by two-stage selective atmospheric leaching process. Adv Mater Res 396:552–555. https://doi.org/10.4028/www.scientific.net/AMR.396-398.552

    Article  Google Scholar 

  28. Liu F, Liu Z, Li Y, Wilson BP, Lundström M (2017) Recovery and separation of gallium(III)and germanium(IV) from zinc refinery residues: Part I: Leaching and iron (III) removal. Hydrometallurgy 169:564–570. https://doi.org/10.1016/j.hydromet.2017.03.006

    Article  Google Scholar 

  29. Bayat S, Aghazadeh S, Noaparast M, Gharabaghi M, Taheri B (2016) Germanium separation and purification by leaching and precipitation. J Cent South Univ 23:2214–2222. https://doi.org/10.1007/s11771-016-3279-6

    Article  Google Scholar 

  30. Zhang L, Guo W, Peng J, Li J, Lin G, Yu X (2016) Comparison of ultrasonic-assisted and regular leaching of germanium from by-product of zinc metallurgy. Ultrason Sonochem 31:143–149. https://doi.org/10.1016/j.ultsonch.2015.12.006

    Article  Google Scholar 

  31. Rao S, Wang D, Liu Z, Zhang K, Cao H, Tao J (2018) Selective extraction of zinc, gallium, and germanium from zinc refinery residue using two stage acid and alkaline leaching. Hydrometallurgy 183:38–44. https://doi.org/10.1016/j.hydromet.2018.11.007

    Article  Google Scholar 

  32. Fayram TS, Anderson CG (2008) The development and implementation of industrial hydrometallurgical gallium and germanium recovery. J South Afr Inst Min Metall 108(5):261–271

    Google Scholar 

  33. Liang J, Fan L, Xu K, Huang Y (2012) Study on extraction of germanium with Triocylamine. Energy Procedia 17:1965–1973. https://doi.org/10.1016/j.egypro.2012.02.340

    Article  Google Scholar 

  34. Chmielarz A, Kurylak W (2018) Recovery of metals from low grade primary and secondary resources – IMN experience, Instytut Metali Nieżelaznych, Gliwice, Poland, Prometia Project Report Presentation. http://2020.prometia.eu/wp-content/uploads/2020/12/13-IMN-Chmielarz-Recovery-of-metals-from-low-grade-primary-and-secondary-resources.pdf

  35. Xu L, Ma S (2020) Zinc residue fuming process in side-submerged combustion furnace + fuming furnace. In: A Siegmund et al. (Eds) Pb-Zn 2020: 9th International Symposium on Lead and Zinc Processing, The Minerals, Metals & Materials Series, pp 265–274

  36. Stadnichenko TM, Murata KJ, Zubovic P, Hufschmidt EL (1953) Concentration of germanium in the ash of American coals, a progress report. U.S. Geological Survey Circular 272: 34 p

  37. Kunstmann FH, Hammersma JC (1955) The occurrence of germanium in south African coal and derived products. J South Afr Inst Min Metall 56(1):11–22

    Google Scholar 

  38. Arroyo F, Fernández-Pereira C, Olivares J, Coca P (2009) Hydrometallurgical recovery of germanium from coal gasification fly ash: pilot plant scale evaluation. Ind Eng Chem Res 48:3573–3579. https://doi.org/10.1021/ie800730h

    Article  Google Scholar 

  39. Makowska D, Wierońska F, Strugala A, Kosowska K (2016) Germanium content in Polish hard coals. E3S Web Conf 10:00121. https://doi.org/10.1051/e3sconf/20161000121

    Article  Google Scholar 

  40. Font O, Querol X, Lopez-Soler A, Chimenos JM, Fernández AI, Burgos S, Peña FG (2005) Ge extraction from gasification fly ash. Fuel 84:1384–1392. https://doi.org/10.1016/j.fuel.2004.06.041

    Article  Google Scholar 

  41. Arroyo F, Font O, Fernández-Pereira C, Querol X, Chimenos JM, Zeegers H (2009) Germanium and gallium extraction from gasification fly ash: optimization for up-scaling a recovery process, 2009 World of Coal Ash (WOCA) Conference - May 4-7, 2009 in Lexington, KY, USA

  42. Arroyo F, Font O, Fernández-Pereira C, Querol X, Juan R, Ruiz C, Coca P (2009) Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods. J Hazard Mater 167:582–588. https://doi.org/10.1016/j.jhazmat.2009.01.021

    Article  Google Scholar 

  43. Arroyo F, Fernández-Pereira C, Villard EG, Luna Y, Leiva C, Vilches L, Villegas R (2018) Low environmental impact process for germanium recovery from an industrial residue. Miner Eng 128:106–114. https://doi.org/10.1016/j.mineng.2018.07.022

    Article  Google Scholar 

  44. Chen WS, Chang BC, Chen YJ (2018) Using ion –exchange to recovery of germanium from waste optical fibers by adding citric acid. IOP Conf Ser Earth Environ Sci 159:012008

    Article  Google Scholar 

  45. Zhang L, Xu Z (2017) One-Pot Synthesis of GeAs as ultrafine particles from coal fly ash by vacuum dynamic flash reduction and inert gas condensation. Sci Rep 7:3641. https://doi.org/10.1038/s41598-017-03398-1

    Article  Google Scholar 

  46. Xu D, Chen Y, Guo H, Liu HQ, Xue YD, Zhang WF, Sun YC (2013) Review of germanium recovery technologies from coal. Appl Mech Mater 423:565–573

    Article  Google Scholar 

  47. Bohrer MP, Amelse A, Narasimham PL, Tariyal BK, Turnipseed JM, Gill RF, Moebuis WJ, Bodeker JL (1985) A process for recovering germanium from effluents of optical fiber manufacturing. J Lightwave Technol LT-3(3):699–705. https://doi.org/10.1109/JLT.1985.1074234

    Article  Google Scholar 

  48. Chen Y, Zhou J, Zhang L, Peng J, Li S, Yin S, Yang K, Lin Y (2018) Microwave-assisted and regular leaching of germanium from the germanium –rich lignite ash. Green Process Synthesis 7(6):538–545

    Article  Google Scholar 

  49. Chen WS, Chang BC, Chiu KL (2017) Recovery of germanium from waste optical fibers by hydrometallurgical method. J Environ Chem Eng 5(5):5215–5221. https://doi.org/10.1016/j.jece.2017.09.048

    Article  Google Scholar 

  50. Chen WS, Chang BC, Shuai CK (2020) Improve subsequent leaching efficiency and extraction rate of germanium in optical fibre cables with pre-treatment. IOP Conf Ser Mater Sci Engg 720:012005

    Article  Google Scholar 

  51. Lee SY, Lee M, Lee S, Cho SS, Seo M (2018) Optimization of germanium enrichment from waste optical fibers: a validation experiment using a hybrid approach. Mater Test 60(4):413–417

    Article  Google Scholar 

  52. Rafiee P, Ghassa S, Moosakazemi F, Khosravi R, Siavoshi H (2021) Recovery of a critical metal from electronic wastes: germanium extraction with organic acid. J Cleaner Prod 315:128223. https://doi.org/10.1016/j.jclepro.2021.128223

    Article  Google Scholar 

  53. Font O, Moreno N, Aixa G, Querol X, Navia R (2011) Copper smelting flue dust: a potential source of germanium. Revista de la sociedad española de mineralogía 15:87–88

    Google Scholar 

  54. González A, Font O, Moreno N, Querol X, Arancibia N, Navia R (2017) Copper flash smelting flue dust as a source of germanium. Waste Biomass Valor 8:2121–2129. https://doi.org/10.1007/s12649-016-9725-8

    Article  Google Scholar 

  55. Abhilash PBD (2013) Microbial processing of uranium ores. Miner Process Extrac Metall Rev 34(2):81–113. https://doi.org/10.1080/08827508.2011.635731

    Article  Google Scholar 

  56. Klink C, Eisen S, Daus B, Heim J, Schlömann M, Schöpf S (2016) Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting. J Appl Microbiol 120:1520–1530. https://doi.org/10.1111/jam.13142

    Article  Google Scholar 

  57. Bowers-Irons GLA, Pease JR, Tran QR, Gibb T, Pryor RJ, Haddad S (1991) Biomining of gallium and germanium containing ores (WO Patent 1991003424A1)

  58. Blayda IA, Yu VN, Vasylieva TV, Sliusarenko LI (2017) Variance analysis for optimization of the germanium bioleaching process from coal beneficiation dumps. Biotechnologia Acta 10(4):44–52. https://doi.org/10.15407/biotech10.04.044

    Article  Google Scholar 

  59. Mäkinen J, Salo M, Hassinen H, Kinnunen P (2017) Comparison of reductive and oxidative bioleaching of jarosite for valuable metals recovery. Solid State Phenom 262:24–27. https://doi.org/10.4028/www.scientific.net/SSP.262.24

    Article  Google Scholar 

  60. Cheng B, Zhang T, Zhang K, Cao Z, Zeng L (2018) Recovery of germanium from acid leach solutions of zinc refinery residue using an oxime extractant of HBL101. Metall Res Technol 115(5):510. https://doi.org/10.1051/metal/2018037

    Article  Google Scholar 

  61. Gupta B, Mudhar N (2006) Extraction and separation of germanium using Cyanex 301/Cyanex 923. Separ Sci Technol 41(3):549–572. https://doi.org/10.1080/01496390500525021

    Article  Google Scholar 

  62. Haghighi HK, Irannajad M, Fortuny A, Sastre AM (2018) Recovery of germanium from leach solutions of fly ash using solvent extraction with various extractants. Hydrometallurgy 175:164–169. https://doi.org/10.1016/j.hydromet.2017.11.006

    Article  Google Scholar 

  63. Haghighi HK, Irannajad M, Fortuny A, Sastre AM (2019) Non-dispersive selective extraction of germanium from fly as leachates using membrane-based processes. Sep Sci Technol 54(17):2879–2894. https://doi.org/10.1080/01496395.2018.1555170

    Article  Google Scholar 

  64. Roosendael SV, Roosen J, Banerjee D, Binnemans K (2019) Selective recovery of germanium from iron-rich solutions using a supported ionic liquid phase (SILP). Sep Purif Technol 221:83–92. https://doi.org/10.1016/j.seppur.2019.03.068

    Article  Google Scholar 

  65. Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28:57–102. https://doi.org/10.1016/j.oregeorev.2003.06.002

    Article  Google Scholar 

  66. Virolainen S, Heinonen J, Paatero E (2013) Selective recovery of germanium with N-methylglucamine-functional resin from sulfate solutions. Sep Purif Technol 104:193–199. https://doi.org/10.1016/j.seppur.2012.11.023

    Article  Google Scholar 

  67. Arroyo F, Fernández-Pereira C, Campanario MC (2010) Recovery of germanium from aqueous solutions by ion-exchange extraction of its catechol complex. Ind Eng Chem Res 49(10):4817–4823. https://doi.org/10.1021/ie901020f

    Article  Google Scholar 

  68. Tutkun O, Demircan N, Kumbasar RA (1999) Extraction of germanium from acidic leach solutions by liquid membrane technique. Clean Prod Process 1:148–153. https://doi.org/10.1007/s100980050019

    Article  Google Scholar 

  69. Haghighi HK, Irannajad M, Coll MT, Sastre AM (2019) Non-dispersive extraction of Ge(IV) from aqueous solutions by Cyanex 923: Transport and modeling studies. Metals 9:676. https://doi.org/10.3390/met9060676

    Article  Google Scholar 

  70. Nozoe A, Keisuke O, Hidetaka K (2012) Germanium recovery using catechol complexation and permeation through an anion-exchange membrane. Sep Sci Technol 47(1):62–65. https://doi.org/10.1080/01496395.2011.613440

    Article  Google Scholar 

  71. Kuroiwa K, Ohura SI, Morisada S, Ohto K, Kawakita H, Matsuo Y, Fukuda D (2014) Recovery of germanium from waste solar panels using ion-exchange membrane and solvent extraction. Miner Eng 55:181–185. https://doi.org/10.1016/j.mineng.2013.10.002

    Article  Google Scholar 

  72. Robertz B, Verhelle J, Schurmans M (2015) The primary and secondary production of germanium: a life-cycle assessment of different process alternatives. JOM 67:412–424. https://doi.org/10.1007/s11837-014-1267-6

    Article  Google Scholar 

  73. Wu M, Brooks NR, Schaltin S, Binnemans K, Fransaer J (2013) Electrodeposition of germanium from the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide. J Phys Chem Chem Phys 15:4955–4964. https://doi.org/10.1039/C3CP44554B

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the permission of The Director, CSIR-National Metallurgical Laboratory, Jamshedpur to publish the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Meshram.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshram, P., Abhilash Strategies for Recycling of Primary and Secondary Resources for Germanium Extraction. Mining, Metallurgy & Exploration 39, 689–707 (2022). https://doi.org/10.1007/s42461-022-00549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-022-00549-5

Keywords

Navigation