Skip to main content
Log in

Copper Flash Smelting Flue Dust as a Source of Germanium

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Economic and environmental benefits may be obtained by extracting certain resources from industrial waste instead of natural sources. Flue dust from Cu smelting is a potential source of Ge, since relatively high contents of this element may be present in Cu-sulphide ores. This study focuses on evaluating Cu smelting flue dust as a potential source of valuable elements. Chemical and mineralogical characterisation of Chilean Cu flue dust and the leaching potential of Ge (and other elements) were performed with different chemical leaching agents. Cu smelting flue dust presents fine particle size with high enrichment of small crystals, mainly composed of As, S, Pb, Zn and Cu minerals (sulphides and sulphates). Extraction with water revealed Li, Rb and Ge yields between 97.2 and 100 %, suggesting their occurrence as soluble species. In view of the high leaching yield achieved, Cu smelting flue dust may be considered a promising material for the extraction and recovery of Ge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Van der Hel, S.: New science for global sustainability?. The institutionalization of knowledge co-production in future Earth. Environ. Sci. Policy 61, 165–175 (2016)

    Article  Google Scholar 

  2. Maksaev, V., Townley, B., Palacios, C., Camus, F.: Metallic ore deposits. In: Moreno, T., Gibbons, W.: (editors). The Geology of Chile, pp. 179–199. London (2007)

  3. International Copper Study Group. The World Copper factbook (2015). http://copperalliance.org/wordpress/wp-content/uploads/2012/01/ICSG-Factbook-2014.pdf. Accessed 12 Apr 2016

  4. Banco Mundial (2015). http://www.bancomundial.org/es/country/chileAccessed 10 Apr 2016

  5. Espejo, L., Kretschmer, N., Oyarzun, J., Meza, F., Núñez, J., Maturana, H., Soto, G., Oyarzo, P., Garrido, M., Suckel, F., Amezaga, J., Oyarzún, R.: Application of water quality indices and analysis of the surface water quality monitoring network in semiarid North-Central Chile. Environ. Monit. Assess. 184, 5571–5588 (2012)

    Article  Google Scholar 

  6. Pizarro, J., Vergara, P.M., Rodriguez, J.A., Valenzuela, A.M.: Heavy metals in Northern Chilean Rivers: spatial variation and temporal trends. J. Hazard. Mater. 181, 747–754 (2012)

    Article  Google Scholar 

  7. Villavicencio, G., Espinace, R., Palma, J., Fourie, A., Valenzuela, P.: Failures of sand tailings dams in a highly seismic country. Can. Geotech. J. 51, 449–464 (2014)

    Article  Google Scholar 

  8. Montenegro, V., Sano, H., Fujisawa, T.: Recirculation of Chilean copper smelting dust with high arsenic content to the smelting process. Mater. Trans. 49, 2112–2118 (2008)

    Article  Google Scholar 

  9. Montenegro, V., Sano, H., Fujisawa, T.: Recirculation of high arsenic content copper smelting dust to smelting and converting processes. Miner. Eng. 49, 184–189 (2013)

    Article  Google Scholar 

  10. Ha, T.K., Kwon, B.H., Park, K.S., Mohapatra, D.: Selective leaching and recovery of bismuth as Bi2O3 from copper smelter converter dust. Sep. Purif. Technol. 142, 116–122 (2015)

    Article  Google Scholar 

  11. Balladares, E., Kelm, U., Helle, S., Parra, R., Araneda, E.: Chemical-mineralogical characterization of copper smelting flue dust. DYNA 81, 1–15 (2014)

    Article  Google Scholar 

  12. Chilean Regulation N° 148 (DS N° 148). Reglamento Sanitario sobre manejo de residuos peligrosos (2003)

  13. Riveros, M.: Gran minería del cobre: El 20% de la producción cerrará o se reconvertirá al año 2025. El Mercurio (Chilean Journal). http://www.economiaynegocios.cl/noticias/noticias.asp?id=121177. Accessed 10 May 2016

  14. Alguacil, F.J., Garcia-Diaz, I., Lopez, F.A., Rodriguez, O., Alonso, M.: Recycling of a copper flue dust via leaching-solvent extraction processing. In: Proceedings of the 4th international conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) and SECOTOX Conference. ISBN: 978-960-6865-68-8, Greece, (2013)

  15. Barcan, V.: Leaching of nickel and copper from soil contaminated by metallurgical dust. Environ. Int. 28, 63–64 (2002)

    Article  Google Scholar 

  16. Shih, C.-J., Lin, C.-F.: Arsenic contaminated site at abandoned copper smelter plant: waste characterization and solidification/stabilization treatment. Chemosphere 53, 693–703 (2003)

    Article  Google Scholar 

  17. Bakhtiari, F., Zivdar, Z., Atashi, H., Bagheri, S.: Bioleaching of copper from smelter dust in a series of airlift bioreactors. Hydrometallurgy 90, 40–45 (2008)

    Article  Google Scholar 

  18. Morales, A., Cruells, M., Roca, A., Bergo, R.: Treatment of copper flash smelter flue dusts for copper and zinc extraction. Miner. Eng. 105, 148–154 (2012)

    Google Scholar 

  19. Chen, Y., Liao, T., Li, G., Chen, B., Shi, X.: Recovery of bismuth and arsenic from copper smelter flue dusts after copper and zinc extraction. Miner. Eng. 39, 23–28 (2012)

    Article  Google Scholar 

  20. Klink, C., Daus, B., Heim, J., Schlömann, M., Schopf, S.: Investigation of acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting. J. App. Microbiol. (2016). doi:10.1111/jam.13142

    Google Scholar 

  21. Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q.: A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 141, 105–121 (2015)

    Article  Google Scholar 

  22. Taggart, R.K., Hower, J.C., Dwyer, G.S., Hsu-Kim, H.: Trends in the rare earth element content of US-based coal combustion fly ashes. Environ. Sci. Technol. 50, 5919–5926 (2016)

    Article  Google Scholar 

  23. Liu, Z., Li, H.: Metallurgical process for valuable recovery from red mud. Hydrometallurgy 155, 29–43 (2015)

    Article  Google Scholar 

  24. Zhang, F.S., Itho, H.: Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process. J. Hazard. Mater. B136, 663–670 (2006)

    Article  Google Scholar 

  25. Tessier, A., Campbell, P.G.C., Bisson, M.: Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–852 (1979)

    Article  Google Scholar 

  26. Wesley, D.A., David, J.C., Keith, B.B.: Solvent extraction of cesium (and rubidium) from ore liquors with substituted phenols. Ind. Eng. Process Des. Dev. 4, 249–252 (1965)

    Article  Google Scholar 

  27. Helmke, P.A., Sparks, D.L.: Lithium, sodium, potassium, rubidium and cesium. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Summer, M.E..: (editors). Methods of soil analysis Part 3-chemical methods, pp. 551–574. Soil Society of America, Wisconsin, USA (1996)

  28. Wali, A., Colinet, G., Ksibi, M.: Speciation of heavy metals by modified BCR sequential extraction in soils contaminated by Phosphogypsum in Sfax,Tunisia. Environ. Res. Eng. Manag. 4, 14–26 (2015)

    Google Scholar 

  29. Brown Jr, R.D.: Germanium. (2001). http://minerals.usgs.gov/minerals/pubs/…/germanium/germmyb01.pdf. Accessed 09 Dec 2015

  30. Guberman, D.E.: Germanium. Geological Survey, Mineral Commodity Summaries (2015). http://minerals.usgs.gov/minerals/pubs/commodity/germanium/mcs-2015-germa.pdf. Accessed 08 Jan 2016

  31. Querol, X., Whateley, M.K.G., Fernández-Turiel, J.L., Tuncali, E.: Geological controls on the mineralogy and geochemistry of the Beypazari lignite, Central Anatolia, Turkey. Int. J. Coal Geol. 33, 255–271 (1997)

    Article  Google Scholar 

  32. Tait, J., Ault, L.: Development of analytical procedures for determination of major and trace elements in geochemical materials by ICP-ES. Analytical Geochemistry Series, Technical report, p. 72. (1992)

  33. Thompson, M., Walsh, J.N.: Handbook of Inductively Coupled Plasma Spectrometry. Chapman and Hall Inc, New York (1989)

    Book  Google Scholar 

  34. ASTM C618-92a. Standard specification for fly ash and raw or calcinated natural pozzolan for use as mineral admixture in Portland cement concrete. American Society for Testing and Materials, Vol 04.02. Pennsylvania (1994)

  35. European Committee for Standardisation EN 12457-2: 2002, Characterisation of waste-leaching-compliance test for leaching of granular waste materials and sludges—Part 2: One Stage Batch Test A Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size Below 4 mm

  36. Council Decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Official Journal of the European Union Lll, 16 Jan 2003, 27–49

  37. Moreno, N., Querol, X., Andres, J.M., Stanton, K., Towler, M., Nugteren, H., Janssen-Jurkovicova, M., Jones, R.: Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel 84, 1351–1363 (2005)

    Article  Google Scholar 

  38. Okada, T., Tojo, Y., Tanaka, N., Matsuko, T.: Recovery of zinc and lead from fly ash-melting and gasification-melting processes of MSW-Comparison and applicability of chemical leaching methods. Waste Manag 27, 69–80 (2007)

    Article  Google Scholar 

  39. Miyake, M.: Resource recovery of inorganic solid waste for reduction of environmental load. J. Ceramic Soc. Jpn. 115, 1–8 (2007)

    Article  Google Scholar 

  40. Tikhomirov, V.V.: Hydrogeochemistry fundamentals and advances. Mass transfer and Mass transport. Volume 2. John Wiley & Sons and Scrivener, New Jersey and Massachusetts (2016)

  41. Font, O., Querol, X., Lòpez-Soler, A., Chimenos, J.M., Fernández, A.I., Burgos, S., García-Peña, F.: Ge extraction from gasification fly ash. Fuel 84, 1384–1392 (2005)

    Article  Google Scholar 

  42. Kalderis, D., Tsolaki, E., Antoniou, C., Diamadopoulos, E.: Characterization and treatment of wastewater produced during the hydro-metallurgical extraction of germanium from fly ash. Desalination 230, 162–174 (2008)

    Article  Google Scholar 

  43. Höll, R., Kling, M., Schroll, E.: Metallogenesis of germanium A review. Ore Geol. Rev. 30, 145–180 (2007)

    Article  Google Scholar 

  44. Hernández-Exposito, A., Chimenos, J.M., Fernández, A.I., Burgos, S., García Pena, F.: Ge extraction from gasification fly ash. Chem. Ing. J. 118, 69–75 (2006)

    Google Scholar 

  45. Arroyo, F., Font, O., Fernandez-Pereira, C., Querol, X., Juan, R., Ruiz, C., Coca, P.: Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods. J. Hazard. Mater. 167, 582–588 (2009)

    Article  Google Scholar 

  46. Takemura, H., Monsada, Sh, Ohto, K., Heidetaka, K., Matsuo, Y., Fukuda, D.: Germanium recovery by catechol complexation and subsequent flow through membrane and bead-packed bed column. J. Chem. Technol. Biotechnol. 88, 1468–1472 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the support of FONDECYT under grants 11130157 and 11150088 and Basal Funding for Scientific and Technological Centers under project FB0807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, A., Font, O., Moreno, N. et al. Copper Flash Smelting Flue Dust as a Source of Germanium. Waste Biomass Valor 8, 2121–2129 (2017). https://doi.org/10.1007/s12649-016-9725-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9725-8

Keywords

Navigation