Skip to main content
Log in

Recent Developments in Thermally Insulating Materials Based on Geopolymers—a Review Article

  • Review
  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

The evolution of trapped geothermal heat in hot underground mine along with emission of toxic gases and dust during mine activity makes the mine environment unfavorable is hazardous to worker’s health. This imposes significant demand on cooling and ventilation systems. As a result, substantial costs are incurred while implementing environmental regulation processes to dissipate the heat and provide comfortable working conditions. Thus, as an alternative, the development of cost effective materials to act as efficient thermal insulators is on the rise. Thermal conductivity is an important property that is a direct measure of a material’s ability to facilitate/deter heat flow. In addition to their superior chemical resistance, adequate mechanical strength, abrasion and fire retardant as well as environmental benefits in comparison to existing building materials such as ordinary Portland cement, aluminosilicate based geopolymers are now gaining widespread interest as promising thermally insulating and sustainable materials. This paper begins with an overview of geopolymers, transitioning into a discussion of recent developments in the field of geopolymer development as a thermally insulating material broadly classified into: filled geopolymers and porous geopolymers resulting in structures with enhanced ability to impede heat flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Базисная Конфигурация Y-Соединений Однослойных Углеродных Нанотрубок Симметрии D, “Физика Твердого Тела.” 46 (2004) 1529

  2. Davidovits J (1994) PROPERTIES OF GEOPOLYMER CEMENTS Joseph Davidovits Geopolymer Institute, 02100 Saint-Quentin, France, Alkaline Cem Concr KIEV Ukr 1–19. https://doi.org/10.1073/pnas.0811322106

  3. Davidovits J (2002) Years of successes and failures in geopolymer applications. Market trends and potential breakthroughs. In: Geopolymer 2002 conference, vol 28. Saint-Quentin, France; Melbourne, Australia: Geopolymer Institute, p 29

  4. Majidi B (2009) Geopolymer technology, from fundamentals to advanced applications: a review. Mater Technol 24:79–87. https://doi.org/10.1179/175355509X449355

    Article  Google Scholar 

  5. Herbert SJ, Sakthieswaran N, Shiny BG (2015) Review on geopolymer concerte with different additives. Int J Eng Res 1:21–31. https://doi.org/10.1212/WNL.0b013e3181e04264

    Article  Google Scholar 

  6. 서정근, No Title넥슨, 게임시장 독점 논란 확산, Digit. Times. Unknown (2012) No Pages. http://www.dt.co.kr/contents.html?article_no=2012071302010531749001. Accessed 3 Mar 2019

  7. Ahmari S, Zhang L, Zhang J (2012) Effects of activator type/concentration and curing temperature on alkali-activated binder based on copper mine tailings. J Mater Sci 47:5933–5945. https://doi.org/10.1007/s10853-012-6497-9

    Article  Google Scholar 

  8. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1997) The potential use of geopolymeric materials to immobilise toxic metals: part I. Theory and applications. Miner Eng 10:659–669. https://doi.org/10.1016/S0892-6875(97)00046-0

    Article  Google Scholar 

  9. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, Van Deventer JSJ (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf A Physicochem Eng Asp 269:47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060

    Article  Google Scholar 

  10. Provis JL, Lukey GC, Van Deventer JSJ (2005) Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem Mater 17:3075–3085. https://doi.org/10.1021/cm050230i

    Article  Google Scholar 

  11. Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC (2004) 04/00191 The characterization of source materials in fly ash-based geopolymers. Fuel Energy Abstr 45:23. https://doi.org/10.1016/S0140-6701(04)91393-8

    Article  Google Scholar 

  12. Fernández-Jiménez A, Palomo A (2003) Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel 82:2259–2265. https://doi.org/10.1016/S0016-2361(03)00194-7

    Article  Google Scholar 

  13. Dombrowski K, Buchwald A, Weil M (2007) The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J Mater Sci 42:3033–3043. https://doi.org/10.1007/s10853-006-0532-7

    Article  Google Scholar 

  14. Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW (1999) Chemical stability of cementitious materials based on metakaolin - isothermal conduction calorimetry study. Cem Concr Res 29:997–1004. https://doi.org/10.1016/S0008-8846(99)00074-5

    Article  Google Scholar 

  15. Wang H, Li H, Yan F (2005) Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids Surf A Physicochem Eng Asp 268:1–6. https://doi.org/10.1016/j.colsurfa.2005.01.016

    Article  Google Scholar 

  16. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A Physicochem Eng Asp 292:8–20. https://doi.org/10.1016/j.colsurfa.2006.05.044

    Article  Google Scholar 

  17. Primi C, Narducci R, Benedetti D, Donati M, Chiesi F (2011) Validity and reliability of the italian version of the brief sensation seeking scale (BSSS) and its invariance across age and gender, TPM - testing. Psychom Methodol Appl Psychol 18:231–241. https://doi.org/10.1016/j.micromeso.2007.03.024

    Article  Google Scholar 

  18. Davidovits J (1991) Geopolymers. J Therm Anal 37:1633–1656. https://doi.org/10.1007/BF01912193

    Article  Google Scholar 

  19. Granizo ML, Blanco-Varela MT, Palomo A (2000) Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry. J Mater Sci 35:6309–6315. https://doi.org/10.1023/A:1026790924882

    Article  Google Scholar 

  20. Duxson P, Provis JL, Lukey GC, Separovic F, van Deventer JSJ (2005) 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir. 21:3028–3036. https://doi.org/10.1021/la047336x

    Article  Google Scholar 

  21. Zhang Y, Bao H, Miao F, Shen Y, He Y, Gu W, Meng Q, Wang W, Zhang J (2013) Characterization of a monoclonal antibody to Spiroplasma eriocheiris and identification of a motif expressed by the pathogen. Vet Microbiol 161:353–358. https://doi.org/10.1016/j.vetmic.2012.07.042

    Article  Google Scholar 

  22. Luukkonen T, Sarkkinen M, Kemppainen K, Rämö J, Lassi U (2016) Metakaolin geopolymer characterization and application for ammonium removal from model solutions and landfill leachate. Appl Clay Sci 119:266–276. https://doi.org/10.1016/j.clay.2015.10.027

    Article  Google Scholar 

  23. Nyale SM, Babajide OO, Birch GD, Böke N, Petrik LF (2013) Synthesis and characterization of coal fly ash-based foamed geopolymer. Procedia Environ Sci 18:722–730. https://doi.org/10.1016/j.proenv.2013.04.098

    Article  Google Scholar 

  24. Böke N, Birch GD, Nyale SM, Petrik LF (2015) New synthesis method for the production of coal fly ash-based foamed geopolymers. Constr Build Mater 75:189–199. https://doi.org/10.1016/j.conbuildmat.2014.07.041

    Article  Google Scholar 

  25. Cheng TW, Chiu JP (2003) Fire-resistant geopolymer produce by granulated blast furnace slag. Miner Eng 16:205–210. https://doi.org/10.1016/S0892-6875(03)00008-6

    Article  Google Scholar 

  26. Ismail I, Bernal SA, Provis JL, San Nicolas R, Hamdan S, Van Deventer JSJ (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos 45:125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006

    Article  Google Scholar 

  27. Lemougna PN, Wang KT, Tang Q, Melo UC, Cui XM (2016) Recent developments on inorganic polymers synthesis and applications. Ceram Int 42:15142–15159. https://doi.org/10.1016/j.ceramint.2016.07.027

    Article  Google Scholar 

  28. Duxson P, Lukey GC, Van Deventer JSJ (2007) Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °c. J Mater Sci 42:3044–3054. https://doi.org/10.1007/s10853-006-0535-4

    Article  Google Scholar 

  29. Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) The role of inorganic polymer technology in the development of “green concrete”. Cem Concr Res 37:1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018

    Article  Google Scholar 

  30. Komnitsas K, Zaharaki D (2007) Geopolymerisation: a review and prospects for the minerals industry. Miner Eng 20:1261–1277. https://doi.org/10.1016/j.mineng.2007.07.011

    Article  Google Scholar 

  31. Rahier H, Van Mele B, Biesemans M, Wastiels J, Wu X (1996) Low-temperature synthesized aluminosilicate glasses. J Mater Sci 31:71–79. https://doi.org/10.1007/BF00355128

    Article  Google Scholar 

  32. Cruciani G (2006) Zeolites upon heating: factors governing their thermal stability and structural changes. J Phys Chem Solids 67:1973–1994. https://doi.org/10.1016/j.jpcs.2006.05.057

    Article  Google Scholar 

  33. Shi C, Roy D, Krivenko P (2003) Alkali-activated cements and concretes. CRC press

  34. Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC (2002) The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chem Eng J 89:63–73. https://doi.org/10.1016/S1385-8947(02)00025-6

    Article  Google Scholar 

  35. Duxson P, Lukey GC, Van Deventer JSJ (2006) Thermal conductivity of metakaolin geopolymers used as a first approximation for determining gel interconnectivity. Ind Eng Chem Res 45:7781–7788. https://doi.org/10.1021/ie060187o

    Article  Google Scholar 

  36. Xu H, Van Deventer JSJ (2003) Effect of source materials on geopolymerization. Ind Eng Chem Res 42:1698–1706. https://doi.org/10.1021/ie0206958

    Article  Google Scholar 

  37. Schmücker M, MacKenzie KJD (2005) Microstructure of sodium polysialate siloxo geopolymer. Ceram Int 31:433–437. https://doi.org/10.1016/j.ceramint.2004.06.006

    Article  Google Scholar 

  38. Giannopoulou I, Panias D (2007) Structure, design and applications of geopolymeric materials, 3rd Int. Conf. Deform. Process. Struct. Mater. http://elektron.tmf.bg.ac.rs/dpsm2007/proceedings/24-Giannopoulou-Panias.pdf Accessed 3 Mar 2019

  39. Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuralev Model. Colloids Surf A Physicochem Eng Asp 173:1–38. https://doi.org/10.1016/S0927-7757(00)00556-2

    Article  Google Scholar 

  40. Phair JW, van Deventer JSJ (2001) Effect of silicate activator pH on the leaching and material characteristics of effect of waste-based inorganic polymers. Miner Eng 14:289–304

    Article  Google Scholar 

  41. Rowles M, O’Connor B (2003) Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. J Mater Chem 13:1161–1165. https://doi.org/10.1039/b212629j

    Article  Google Scholar 

  42. Zhang Z, Wang K, Mo B, Li X, Cui X (2015) Preparation and characterization of a reflective and heat insulative coating based on geopolymers. Energy Build 87:220–225. https://doi.org/10.1016/j.enbuild.2014.11.028

    Article  Google Scholar 

  43. Villaquirán-Caicedo MA, Mejía de Gutiérrez R, Gallego NC (2017) A novel MK-based geopolymer composite activated with rice husk ash and KOH: performance at high temperature. Mater Constr 67:117. https://doi.org/10.3989/mc.2017.02316

    Article  Google Scholar 

  44. Ducman V, Korat L (2016) Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2as foaming agents. Mater Charact 113:207–213. https://doi.org/10.1016/j.matchar.2016.01.019

    Article  Google Scholar 

  45. Ul Haq E, Kunjalukkal Padmanabhan S, Licciulli A (2015) Microwave synthesis of thermal insulating foams from coal derived bottom ash. Fuel Process Technol 130:263–267. https://doi.org/10.1016/j.fuproc.2014.10.017

    Article  Google Scholar 

  46. Lach M, Korniejenko K, Mikula J (2016) Thermal insulation and thermally resistant materials made of geopolymer foams. Procedia Eng 151:410–416. https://doi.org/10.1016/j.proeng.2016.07.350

    Article  Google Scholar 

  47. Vaou V, Panias D (2010) Thermal insulating foamy geopolymers from perlite. Miner Eng 23:1146–1151. https://doi.org/10.1016/j.mineng.2010.07.015

    Article  Google Scholar 

  48. Novais RM, Ascensao G, Ferreira N, Seabra MP, Labrincha JA, Ascensão G, Ferreira N, Seabra MP, Labrincha JA (2018) Influence of water and aluminium powder content on the properties of waste-containing geopolymer foams. Ceram Int 44:6242–6249. https://doi.org/10.1016/j.ceramint.2018.01.009

    Article  Google Scholar 

  49. Dongkyu Kim, Robert C. Cieslinski, Giuseppe Vairo, Scott T. Matteucci, Chan Han, Luigi Bertucelli (2013) Geopolymer precursor-aerogel compositions. Dow Global Technologies LLC, 20150050486, 19, February, 2015

  50. Kamseu E, Ceron B, Tobias H, Leonelli E, Bignozzi MC, Muscio A, Libbra A (2012) Insulating behavior of metakaolin-based geopolymer materials assess with heat flux meter and laser flash techniques. J Therm Anal Calorim 108:1189–1199. https://doi.org/10.1007/s10973-011-1798-9

    Article  Google Scholar 

  51. Tritt TM (2005) Thermal conductivity: theory, properties, and applications. Springer, US https://books.google.com/books?id=whJNfKmziiIC Accessed 17 Mar 2019

  52. Sumirat I, Ando Y, Shimamura S (2006) Theoretical consideration of the effect of porosity on thermal conductivity of porous materials. J Porous Mater 13:439–443. https://doi.org/10.1007/s10934-006-8043-0

    Article  Google Scholar 

  53. Jelle BP (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions–Properties, requirements and possibilities. Energy and Buildings 43(10):2549–2563

  54. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  55. Kamseu E, Nait-Ali B, Bignozzi MCC, Leonelli C, Rossignol S, Smith DSS (2012) Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J Eur Ceram Soc 32:1593–1603. https://doi.org/10.1016/j.jeurceramsoc.2011.12.030

    Article  Google Scholar 

  56. Al-Homoud DMS, Al-Homoud MS, Al-Homoud DMS (2005) Performance characteristics and practical applications of common building thermal insulation materials. Build Environ 40:353–366. https://doi.org/10.1016/J.BUILDENV.2004.05.013

    Article  Google Scholar 

  57. Zemene P, Vörös F (2010) EPS–The insulation for sustainable building. Conference Central Europe towards Sustainable Building, CESB

  58. Samar M, Saxena P, Shweta (2016) Study of chemical and physical properties of perlite and its application in India. Int J Sci Technol Manag 5:70–80

    Google Scholar 

  59. Papadopoulos AM (2005) State of the art in thermal insulation materials and aims for future developments. Energy Build 37:77–86. https://doi.org/10.1016/j.enbuild.2004.05.006

    Article  Google Scholar 

  60. Wu J-W, Sung W-F, Chu H-S (1999) Thermal conductivity of polyurethane foams. Int J Heat Mass Transf 42:2211–2217. https://doi.org/10.1016/S0017-9310(98)00315-9

    Article  Google Scholar 

  61. Kevin L (2010) ( 12 ) United States Patent DETECTION OF SECRETED ASPARTYL ( 45 ) Date of Patent :, 2 2–8

  62. Huiskes DMAA, Keulen A, Yu QL, Brouwers HJHH (2016) Design and performance evaluation of ultra-lightweight geopolymer concrete. Mater Des 89:516–526. https://doi.org/10.1016/j.matdes.2015.09.167

    Article  Google Scholar 

  63. Yang C, Fischer L, Maranda S, Worlitschek J (2015) Rigid polyurethane foams incorporated with phase change materials: a state-of-the-art review and future research pathways. Energy Build 87:25–36. https://doi.org/10.1016/J.ENBUILD.2014.10.075

    Article  Google Scholar 

  64. Frank K, Goswami DY (2004) Hand book of mechanical engineering. CRC Press

  65. Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sust Energ Rev 34:273–299. https://doi.org/10.1016/j.rser.2014.03.017

    Article  Google Scholar 

  66. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335–342. https://doi.org/10.1016/S0022-3093(98)00135-5

    Article  Google Scholar 

  67. Buchwald A, Vicent M, Kriegel R, Kaps C, Monzó M, Barba A (2009) Geopolymeric binders with different fine fillers - phase transformations at high temperatures. Appl Clay Sci 46:190–195. https://doi.org/10.1016/j.clay.2009.08.002

    Article  Google Scholar 

  68. Panagiotou T, Levendis Y (1998) Observations on the combustion of polymers (plastics): from single particles to groups of particles. Combust Sci Technol 137:121–147. https://doi.org/10.1080/00102209808952048

    Article  Google Scholar 

  69. Motzkus C, Chivas-Joly C, Guillaume E, Ducourtieux S, Saragoza L, Lesenechal D, MacÉ T, Lopez-Cuesta JM, Longuet C (2012) Aerosols emitted by the combustion of polymers containing nanoparticles. J Nanopart Res 14. https://doi.org/10.1007/s11051-011-0687-2

  70. Robitschek P (1965) Flammability characteristics of cellular plastics. J Cell Plast 1(3):395–399

  71. Yung KCC, Zhu BLL, Yue TMM, Xie CSS (2009) Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos Sci Technol 69:260–264. https://doi.org/10.1016/j.compscitech.2008.10.014

    Article  Google Scholar 

  72. Liang JZ, Li FH (2006) Measurement of thermal conductivity of hollow glass-bead-filled polypropylene composites. Polym Test 25:527–531. https://doi.org/10.1016/J.POLYMERTESTING.2006.02.007

    Article  Google Scholar 

  73. Wang M-R, Jia D-C, He P-G, Zhou Y (2011) Microstructural and mechanical characterization of fly ash cenosphere/metakaolin-based geopolymeric composites. Ceram Int 37:1661–1666. https://doi.org/10.1016/j.ceramint.2011.02.010

    Article  Google Scholar 

  74. Chindaprasirt P, Nuaklong P, Zaetang Y, Sujumnongtokul P, Sata V (2014) Mechanical and thermal properties of recycling lightweight pervious concrete. Arab J Sci Eng 40:443–450. https://doi.org/10.1007/s13369-014-1563-z

    Article  Google Scholar 

  75. Jerman M, Keppert M, Výborný J, Černý R (2013) Hygric, thermal and durability properties of autoclaved aerated concrete. Constr Build Mater 41:352–359. https://doi.org/10.1016/j.conbuildmat.2012.12.036

    Article  Google Scholar 

  76. Topçu IB, Uygunoglu T (2007) Properties of autoclaved lightweight aggregate concrete. Build Environ 42:4108–4116. https://doi.org/10.1016/j.buildenv.2006.11.024

    Article  Google Scholar 

  77. Sari D, Pasamehmetoglu AG (2005) The effects of gradation and admixture on the pumice lightweight aggregate concrete. Cem Concr Res 35:936–942. https://doi.org/10.1016/j.cemconres.2004.04.020

    Article  Google Scholar 

  78. Liu MYJ, Alengaram UJ, Jumaat MZ, Mo KH (2014) Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy Build 72:238–245. https://doi.org/10.1016/j.enbuild.2013.12.029

    Article  Google Scholar 

  79. Wongsa A, Zaetang Y, Sata V, Chindaprasirt P (2016) Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates. Constr Build Mater 111:637–643. https://doi.org/10.1016/j.conbuildmat.2016.02.135

    Article  Google Scholar 

  80. Wongsa A, Sata V, Nuaklong P, Chindaprasirt P (2018) Use of crushed clay brick and pumice aggregates in lightweight geopolymer concrete. Constr Build Mater 188:1025–1034. https://doi.org/10.1016/j.conbuildmat.2018.08.176

    Article  Google Scholar 

  81. Huang Y, Gong L, Pan Y, Li C, Zhou T, Cheng X (2018) Facile construction of the aerogel/geopolymer composite with ultra-low thermal conductivity and high mechanical performance. RSC Adv 8:2350–2356. https://doi.org/10.1039/c7ra12041a

    Article  Google Scholar 

  82. Bentz DP, Turpin R (2007) Potential applications of phase change materials in concrete technology. Cem Concr Compos 29:527–532. https://doi.org/10.1016/j.cemconcomp.2007.04.007

    Article  Google Scholar 

  83. Zhang D, Li Z, Zhou J, Wu K (2004) Development of thermal energy storage concrete. Cem Concr Res 34:927–934. https://doi.org/10.1016/j.cemconres.2003.10.022

    Article  Google Scholar 

  84. Zhao CY, Zhang GH (2011) Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renew Sust Energ Rev 15:3813–3832. https://doi.org/10.1016/J.RSER.2011.07.019

    Article  Google Scholar 

  85. Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45:263–275. https://doi.org/10.1016/S0196-8904(03)00131-6

    Article  Google Scholar 

  86. Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sust Energ Rev 15:1373–1391. https://doi.org/10.1016/J.RSER.2010.10.006

    Article  Google Scholar 

  87. Zalba B, Marin B, Cabeza J, Mehling H (2003) Review on Phase changing materials to store energy. Appl Therm Eng 23:251–283

  88. Sadineni SB, Madala S, Boehm RF (2011) Passive building energy savings: a review of building envelope components. Renew Sust Energ Rev 15:3617–3631. https://doi.org/10.1016/j.rser.2011.07.014

    Article  Google Scholar 

  89. Zhang GH, Zhao CY (2011) Thermal and rheological properties of microencapsulated phase change materials. Renew Energy 36:2959–2966. https://doi.org/10.1016/J.RENENE.2011.04.002

    Article  Google Scholar 

  90. Pan L, Tao Q, Zhang S, Wang S, Zhang J, Wang S, Wang Z, Zhang Z (2012) Preparation, characterization and thermal properties of micro-encapsulated phase change materials. Sol Energy Mater Sol Cells 98:66–70. https://doi.org/10.1016/J.SOLMAT.2011.09.020

    Article  Google Scholar 

  91. Colangelo F, Roviello G, Ricciotti L, Ferrandiz-Mas V, Messina F, Ferone C, Tarallo O, Cioffi R, Cheeseman CR (2018) Mechanical and thermal properties of lightweight geopolymer composites. Cem Concr Compos 86:266–272. https://doi.org/10.1016/j.cemconcomp.2017.11.016

    Article  Google Scholar 

  92. Firawati I, Jasruddin, Subaer (2017) On the physico-mechanics, thermal and microstructure properties of hybrid composite epoxy-geopolymer for geothermal pipe application. MATEC Web Conf 97:01007. https://doi.org/10.1051/matecconf/20179701007

    Article  Google Scholar 

  93. Natali Murri A, Medri V, Landi E (2017) Production and thermomechanical characterization of wool–geopolymer composites. J Am Ceram Soc 100:2822–2831. https://doi.org/10.1111/jace.14853

    Article  Google Scholar 

  94. Singh B, Gupta M, Chauhan M, Bhattacharyya SK (2015) Lightweight geopolymer concrete with EPS beads. Constr Build Mater 85:78–90

    Article  Google Scholar 

  95. Doroudiani S, Omidian H (2010) Environmental, health and safety concerns of decorative mouldings made of expanded polystyrene in buildings. Build Environ 45:647–654. https://doi.org/10.1016/j.buildenv.2009.08.004

    Article  Google Scholar 

  96. Di D, Industriale I (n.d.) Università degli Studi di Padova Dottorando : Chengying Bai

  97. Bai C, Colombo P (2017) High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceram Int 43:2267–2273. https://doi.org/10.1016/j.ceramint.2016.10.205

    Article  Google Scholar 

  98. Bai C, Franchin G, Elsayed H, Zaggia A, Conte L, Li H, Colombo P (2017) High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment. J Mater Res 32:3251–3259. https://doi.org/10.1557/jmr.2017.127

    Article  Google Scholar 

  99. Bai C, Colombo P (2018) Processing, properties and applications of highly porous geopolymers: a review. Ceram Int 44:16103–16118. https://doi.org/10.1016/j.ceramint.2018.05.219

    Article  Google Scholar 

  100. Barg S, Soltmann C, Andrade M, Koch D, Grathwohl G (2008) Cellular ceramics by direct foaming of emulsified ceramic powder suspensions. J Am Ceram Soc 91:2823–2829. https://doi.org/10.1111/j.1551-2916.2008.02553.x

    Article  Google Scholar 

  101. Chen L, Han W, Li Z, Wei T, Xiao C (2011) Preparation and properties of alkali stimulated geopolymer and its application in thermal insulation coating. Adv Mater Res (Durnten-Zurich, Switzerland) 233–235:2443–2446 doi:10.4028/www.scientific.net/AMR.233-235.2443 Accessed 24 Feb 2020

  102. Chen L, Wang Z, Wang Y, Feng J (2016) Preparation and properties of alkali activated metakaolin-based geopolymer. Materials (Basel) 9:1–12. https://doi.org/10.3390/ma9090767

    Article  Google Scholar 

  103. Shadnia R, Zhang L, Li P (2015) Experimental study of geopolymer mortar with incorporated PCM. Constr Build Mater 84:95–102. https://doi.org/10.1016/j.conbuildmat.2015.03.066

    Article  Google Scholar 

  104. Lv X, Guo P, Liu H, Cui L, Cui X (2018) Preparation of paraffin-based phase-change microcapsules and application in geopolymer coating. J Coat Technol Res 15:867–874. https://doi.org/10.1007/s11998-018-0071-6

    Article  Google Scholar 

  105. Strozi Cilla M, Colombo P, Raymundo Morelli MM (2014) Geopolymer foams by gelcasting. Ceram Int 40:5723–5730. https://doi.org/10.1016/j.ceramint.2013.11.011

    Article  Google Scholar 

  106. Ul Haq E, Kunjalukkal Padmanabhan S, Licciulli A (2014) Synthesis and characteristics of fly ash and bottom ash based geopolymers-a comparative study. Ceram Int 40:2965–2971. https://doi.org/10.1016/j.ceramint.2013.10.012

    Article  Google Scholar 

  107. Feng J, Zhang R, Gong L, Li Y, Cao W, Cheng X (2015) Development of porous fly ash-based geopolymer with low thermal conductivity. Mater Des 65:529–533. https://doi.org/10.1016/j.matdes.2014.09.024

    Article  Google Scholar 

  108. Novais RM, Ascensão G, Buruberri LH, Senff L, Labrincha JA, Ascensao G, Buruberri LH, Senff L, Labrincha JA (2016) Influence of blowing agent on the fresh- and hardened-state properties of lightweight geopolymers. Mater Des 108:551–559. https://doi.org/10.1016/j.matdes.2016.07.039

    Article  Google Scholar 

  109. Zaidi SFA, Ul Haq E, Nur K, Ejaz N, Anis-ur-Rehman M, Zubair M, Naveed M (2017) Synthesis & characterization of natural soil based inorganic polymer foam for thermal insulations. Constr Build Mater 157:994–1000. https://doi.org/10.1016/j.conbuildmat.2017.09.112

    Article  Google Scholar 

  110. Novais RM, Buruberri LH, Ascensão G, Seabra MP, Labrincha JA (2016) Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J Clean Prod 119:99–107. https://doi.org/10.1016/j.jclepro.2016.01.083

    Article  Google Scholar 

  111. Liu Y, Yan C, Zhang Z, Gong Y, Wang H, Qiu X (2016) A facile method for preparation of floatable and permeable fly ash-based geopolymer block. Mater Lett 185:370–373. https://doi.org/10.1016/j.matlet.2016.09.044

    Article  Google Scholar 

  112. Samson G, Cyr M, Gao XX (2017) Thermomechanical performance of blended metakaolin-GGBS alkali-activated foam concrete. Constr Build Mater 157:982–993. https://doi.org/10.1016/j.conbuildmat.2017.09.146

    Article  Google Scholar 

  113. Sanjayan JG, Nazari A, Chen L, Nguyen GH (2015) Physical and mechanical properties of lightweight aerated geopolymer. Constr Build Mater 79:236–244. https://doi.org/10.1016/J.CONBUILDMAT.2015.01.043

    Article  Google Scholar 

  114. Hlavek P, Milauer V, Kvra F, Kopeck L, Ulc R (2015) Inorganic foams made from alkali-activated fly ash: mechanical, chemical and physical properties. J Eur Ceram Soc 35:703–709. https://doi.org/10.1016/j.jeurceramsoc.2014.08.024

    Article  Google Scholar 

  115. Ziegler D, Formia A, Tulliani J-M, Palmero P (2016) Environmentally-friendly dense and porous geopolymers using fly ash and rice husk ash as raw materials. Mater (Basel, Switzerland) 9:466. https://doi.org/10.3390/ma9060466

    Article  Google Scholar 

  116. Hajimohammadi A, Ngo T, Mendis P, Sanjayan J (2017) Regulating the chemical foaming reaction to control the porosity of geopolymer foams. Mater Des 120:255–265. https://doi.org/10.1016/J.MATDES.2017.02.026

    Article  Google Scholar 

  117. Esmaily H, Nuranian H (2012) Non-autoclaved high strength cellular concrete from alkali activated slag. Constr Build Mater 26:200–206. https://doi.org/10.1016/j.conbuildmat.2011.06.010

    Article  Google Scholar 

  118. Prud’homme E, Michaud P, Joussein E, Peyratout C, Smith A, Arrii-Clacens S, Clacens JM, Rossignol S (2010) Silica fume as porogent agent in geo-materials at low temperature. J Eur Ceram Soc 30:1641–1648. https://doi.org/10.1016/j.jeurceramsoc.2010.01.014

    Article  Google Scholar 

  119. Henon J, Alzina A, Absi J, Smith DS, Rossignol S (2013) Potassium geopolymer foams made with silica fume pore forming agent for thermal insulation. J Porous Mater 20:37–46. https://doi.org/10.1007/s10934-012-9572-3

    Article  Google Scholar 

  120. Papa E, Medri V, Kpogbemabou D, Morinière V, Laumonier J, Vaccari A, Rossignol S (2016) Porosity and insulating properties of silica-fume based foams. Energy Build 131:223–232. https://doi.org/10.1016/j.enbuild.2016.09.031

    Article  Google Scholar 

  121. Sigma Aldrich website (n.d.) https://www.sigmaaldrich.com/united-states.html Accessed 24 Feb 2020

  122. Stadler A, Pichler S, Horeis G, Kappe CO (2002) Microwave-enhanced reactions under open and closed vessel conditions. A case study. Tetrahedron 58:3177–3183. https://doi.org/10.1016/S0040-4020(02)00270-3

    Article  Google Scholar 

  123. Kuhnert N (2002) Microwave-assisted reactions in organic synthesis—are there any nonthermal microwave effects? Angew Chem Int Ed 41(11):1863–1866

  124. Ma J, Fang M, Li P, Zhu B, Lu X, Lau NT (1997) Microwave-assisted catalytic combustion of diesel soot. Appl Catal A Gen 159:211–228. https://doi.org/10.1016/S0926-860X(97)00043-4

    Article  Google Scholar 

  125. Kim JE, Park HJ, Lee JY, Cho BK, Kim SO (2002) A case of onychomycosis with acute paronychia caused by Fusarium oxysporum. Korean J Med Mycol 7:170–174. https://doi.org/10.1002/anie.200503779

    Article  Google Scholar 

  126. Zhang Z, Provis JL, Reid A, Wang H (2014) Geopolymer foam concrete: an emerging material for sustainable construction. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2014.01.081

  127. Duan P, Song L, Yan C, Ren D, Li Z (2017) Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram Int 43:5115–5120. https://doi.org/10.1016/j.ceramint.2017.01.025

    Article  Google Scholar 

  128. Łach M, Korniejenko K, Mikuła J (2016) Thermal insulation and thermally resistant materials made of geopolymer foams. Procedia Eng 151:410–416. https://doi.org/10.1016/j.proeng.2016.07.350

    Article  Google Scholar 

  129. Adiansyah JS, Rosano M, Vink S, Keir G (2015) A framework for a sustainable approach to mine tailings management: disposal strategies. J Clean Prod 108:1050–1062. https://doi.org/10.1016/j.jclepro.2015.07.139

    Article  Google Scholar 

  130. Mathew BJ, Sudhakar M, Natarajan C (2013) Strength, economic and sustainability characteristics of coal ash – GGBS based geopolymer concrete. Int J Comput Eng Res 3:207–212

    Google Scholar 

  131. Abdollahnejad Z, Pacheco-Torgal F, Félix T, Tahri W, Barroso Aguiar J (2015) Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr Build Mater 80:18–30. https://doi.org/10.1016/j.conbuildmat.2015.01.063

    Article  Google Scholar 

  132. Schulz B (1981) Thermal conductivity of porous and highly porous materials. High Temp-High Pressures 13(6):649–660

  133. Zhao J, Harmer MP (1988) Effect of pore distribution on microstructure development: I, matrix pores. J Am Ceram Soc 71:113–120. https://doi.org/10.1111/j.1151-2916.1988.tb05826.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Rao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P.R., Momayez, M., Runge, K.A. et al. Recent Developments in Thermally Insulating Materials Based on Geopolymers—a Review Article. Mining, Metallurgy & Exploration 37, 995–1014 (2020). https://doi.org/10.1007/s42461-020-00201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-020-00201-0

Keywords

Navigation