Skip to main content

Geopolymers: Past, Present, and Future of Low Carbon Footprint Eco-materials

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

The geopolymers are large inorganic molecules, synthesized by an activated polycondensation reaction, either in a highly alkaline medium or in an acid medium, from substances rich in silicon (Si) and aluminum (Al). They have excellent mechanical and physical properties; high compressive strength, thermal stability, low shrinkage, resistance to fire and acid attacks and are also friendly to the environment. Geoplymers are synthesized at temperatures below 120 ° C, which implies a low energy consumption for its manufacture, compared to the high energy consumption required for the production of traditional ceramic materials. Some of the applications of geopolymers are the encapsulation of toxic waste, refractory coatings, manufacturing of aeronautical equipment, among others. Geopolymers are considered as the third generation of concrete, since they are viable for the preparation of cements, mortars and concrete with properties similar or higher than traditional materials used in construction. Geopolymers are obtained without carbon dioxide (CO2) emissions into the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal 37:1633–1656

    Article  Google Scholar 

  2. Burciaga-Diaz O, Escalante-Garcia JI, Gorokhovsky A (2012) Geopolymers based on a coarse low-purity kaolin mineral: mechanical strength as a function of the chemical composition and temperature. Cem Concr Compos 34(1):18–24. https://doi.org/10.1016/j.cemconcomp.2011.08.001

    Article  Google Scholar 

  3. Wan Q, Rao F, Song, S, García R. Estrella R, Patiño C, Zhang Y (2017) Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem Concr Compos 79:45–52

    Article  Google Scholar 

  4. Nikolov A, Rostovsky I, Nugteren H (2017) Geopolymer based on natural zeolite. Case Stud Constr Mater 6:198–205. https://doi.org/10.1016/j.cscm.2017.03.001

    Article  Google Scholar 

  5. Villa C, Pecina E, Torres R, Gómez L (2010) Geopolymer synthesis using alkaline activation of natural zeolite. Constr Build Mater 24(11):2084–2090. https://doi.org/10.1016/j.conbuildmat.2010.04.052

    Article  Google Scholar 

  6. Duan P, Yan Ch, Zhou W, Lou W (2016) Fresh properties, mechanical strength and microstructure of fly ash geopolymer paste reinforced with sawdust. Constr Build Mater 111:600–610. http://linkinghub.elsevier.com/retrieve/pii/S0950061816301519

    Article  Google Scholar 

  7. Izquierdo M, Querol X, Davidovits J, Antenucci D, Nugteren H, Fernández-Pereira C (2009) Coal fly ash-slag-based geopolymers: microstructure and metal leaching. J Hazard Mater 166(1):561–566

    Article  Google Scholar 

  8. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes: a cement for the future. Cem Concr Res 29(8):1323–1329

    Article  Google Scholar 

  9. Paula M (2017) Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability Guilherme Ascens a ~ o ant o. J Clean Prod 148:23–30

    Article  Google Scholar 

  10. Ye N, Yang J, Liang S, Hu J, Xiao B, Huang Q (2016) Synthesis and strength optimization of one-part geopolymer based on red mud. Constr Build Mater 111:317–325. https://doi.org/10.1016/j.conbuildmat.2016.02.099

    Article  Google Scholar 

  11. Anon (2015) Investigation of novel waste glass and limestone binders using statistical methods. Constr Build Mater 82:296–303

    Article  Google Scholar 

  12. Duxson P, Fernández-Jiménez A, Provis J (2007) Geopolymer technology: the current state of the art. J Mater Sci 42 (9):2917–2933

    Article  Google Scholar 

  13. Bartolomè JF (1997) El Caolín: composición, estructura, génesis y aplicaciones. Boletin Sociedad española de Cerámica y Vidrio 36:20

    Google Scholar 

  14. Kenne B, Elimbi A, Cyr M, Manga J, Tchakoute K (2015) Effect of the rate of calcination of kaolin on the properties of metakaolinbased geopolymers. J Asian Ceramic Soc 3(1):130–138. http://www.sciencedirect.com/science/article/pii/S2187076414001225

    Article  Google Scholar 

  15. Malhotra VM, Mehta PK (1996) Pozzolanic and cementitious materials. Advances in concrete technology, vol 1. Gordon and Breach, Amsterdam

    Google Scholar 

  16. Van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104. https://doi.org/10.1016/j.mineng.2011.09.009

    Article  Google Scholar 

  17. Shi C, Jiménez AF, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 41(7):750–763. https://doi.org/10.1016/j.cemconres.2011.03.016

    Article  Google Scholar 

  18. Jiménez AF, Palomo A, Criado M (2005) Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem Concr Res 35:1204–1209

    Article  Google Scholar 

  19. Zhang ZH, Zhu HJ, Zhou CH, Wang H (2016) Geopolymer from kaolin in China: an overview. Appl Clay Sci 119:31–41. https://doi.org/10.1016/j.clay.2015.04.023

    Article  Google Scholar 

  20. Zibouche F, Kerdjoudj H, Lacaillerie J, Van Damme H (2009) Geopolymers from Algerian metakaolin. Influence of secondary minerals. Appl Clay Sci 43(3–4):453–458. https://doi.org/10.1016/j.clay.2008.11.001

    Article  Google Scholar 

  21. Autef A, Joussein E, Gasnier G, Rossignol S (2013) Role of the silica source on the geopolymerization rate: a thermal analysis study. J Non-Cryst Solids 366(1):13–21. https://doi.org/10.1016/j.jnoncrysol.2012.07.015

    Article  Google Scholar 

  22. Tchakoute, H, Rüscher Djobo, J, Kenne.B, Leonelli C (2015) Influence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements. Appl Clay Sci 107:188–194. https://doi.org/10.1016/j.clay.2015.01.023

    Article  Google Scholar 

  23. De Souza H, Wagner T, De Souza P, Kiyohara P (2005) Thermal phase sequences in gibbsite/kaolinite clay: electron microscopy studies. Ceram Int 31(8):1077–1084

    Article  Google Scholar 

  24. Kurt C, Bittner J (2006) Encyclopedia of industrial chemistry. Sodium hydroxide. Wiley-VCH Verlag. Edit. Ullmann’s, Germany

    Google Scholar 

  25. Davidovits J (2013) Geopolymer cement, a review. Geopolymer Institute

    Google Scholar 

  26. Provis JL, van Deventer JSJ (2009) Geopolymers: structures, processing, properties and industrial applications. CRC Press LLC, Boca Raton

    Book  Google Scholar 

  27. Heah CY, Kamarudin H, Al Bakri A, Bnhussain M, Luqman M, Nizar I, Ruzaidi, C, Liew Y (2012) Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr Build Mater 35:912–922. https://doi.org/10.1016/j.conbuildmat.2012.04.102

    Article  Google Scholar 

  28. Hounsi A, Lecomte-Nana G, Djétéli G, Blanchart P (2013) Kaolin-based geopolymers: effect of mechanical activation and curing process. Constr Build Mater 42:105–113. https://doi.org/10.1016/j.conbuildmat.2012.12.069

    Article  Google Scholar 

  29. Xu H, Van Deventer JSJ (2002) Geopolymerisation of multiple minerals. Miner Eng 15(12):1131–1139

    Article  Google Scholar 

  30. Heah CY, Kamarudin H, Al Bakri A, Binhussain M, Luqman M, Nizar I, Ruzaidi C, Liew Y (2011) Effect of curing profile on kaolin-based geopolymers. Phys Procedia 22:305–311. https://doi.org/10.1016/j.phpro.2011.11.048

    Article  Google Scholar 

  31. Perdikatsis V, Zaharaki D, Komnitsas K (2010) Use of analytical techniques for identification of inorganic polymer gel composition. J Mater Sci 45(10):2715–2724

    Article  Google Scholar 

  32. Davidovits J (2002) 30 years of successes and failures in geopolymer applications. Market trends and potential breakthroughs. In: Keynote conference on geopolymer conference, pp 1–16

    Google Scholar 

  33. Javadian H, Ghorbani F, Tayebi H (2015) Study of the adsorption of cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arab J Chem 8(6):837–849. https://doi.org/10.1016/j.arabjc.2013.02.018

    Article  Google Scholar 

  34. Arioz E, Arioz Ö, Koç ÖM (2013) The effect of curing conditions on the properties of geopolymer samples. Int J Chem Eng Appl 4(6):4–7

    Google Scholar 

  35. Lee W, van Deventer J (2003) Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir 19:8726–8734

    Article  Google Scholar 

  36. Stebbins JF, Zhao P, Lee Sung K, Cheng Xing (1999) Reactive Al-O-Al sites in a natural zeolite: triple-quantum oxygen-17 nuclear magnetic resonance. Am Mineral 84:1680–1684

    Article  Google Scholar 

  37. Hind AR, Bhargava SK, Grocott SC (1999) The surface chemistry of Bayer process solids: a review. Colloids and Surf A-Physicochem Eng Asp 146:359–374

    Article  Google Scholar 

  38. Chandra S (1996) Waste materials used in concrete manufacturing. Noyes Publications, Westwood

    Google Scholar 

  39. Liu Y, Lin C, Wu Y (2007) Characterization of red mud derived from a combined Bayer process and bauxite calcination method. J Hazard Mater 146:255–261

    Article  Google Scholar 

  40. Zanelli C, Alshaaer M, Dondi M, Labrincha JA, Rocha F (2013) Composition and technological properties of geopolymers based on metakaolin and red mud. Mater Des 52:648–654

    Article  Google Scholar 

  41. Power G, Gräfe M, Klauber C (2011) Hydrometallurgy bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 108(1–2):33–45. https://doi.org/10.1016/j.hydromet.2011.02.006

    Article  Google Scholar 

  42. Chandra R, Kishore R, Chandra B (2010) Neutralization of red mud using CO 2 sequestration cycle. J Hazar Mater 179(1–3):28–34. https://doi.org/10.1016/j.jhazmat.2010.02.052

    Article  Google Scholar 

  43. Perera D, Cashion J, Blackford M, Zhang Z, Vance E (2007) Fe speciation in geopolymers with Si/al molar ratio of ∼ 2. J Eur Ceram Soc 27:2697–2703

    Article  Google Scholar 

  44. Dimas DD, Giannopoulou IP, Panias D (2009) Utilization of alumina red mud for synthesis of inorganic polymeric. Miner Process Extr Metall Rev 30(3):211–239

    Article  Google Scholar 

  45. Centre D (1997) Preparation of special cements from red. Waste Manag 16(8):665–670

    Google Scholar 

  46. Steinerová M, Hanslícek T, Straka P, Perná I, Siegl P, Svarcová T (2009) Reinforcement of the terracotta sculpture by geopolymer composite. Mater Des 30:3229–3234

    Article  Google Scholar 

  47. Sahu MK, Mandal S, Yadav LS, Dash SS, Patel RK (2016) Equilibrium and kinetic studies of cd (II) ion adsorption from aqueous solution by activated red mud. Desalin Water Treat 57:14251–14265

    Article  Google Scholar 

  48. Davidovits J (2008) Geopolymer. In: Davidovits J (ed) Geopolymer: chemistry and applications, 2nd edn. Institut Géopolymère, Saint-Quentin

    Google Scholar 

  49. Hussain M, Varely R, Cheng Y, Mathys Z, Simon G (2005) Synthesis and thermal behavior of inorganic – organic hybrid geopolymer composites. J Appl Polym Sci 96(1):112–121

    Article  Google Scholar 

  50. Kim D, Chilingar GV (2006) Geopolymer formation and its unique properties. J Environ Geogr 51:103–111

    Google Scholar 

  51. Henrichs SM (1992) Early diagenesis of organic matter in marine sediments: progress and perplexity. Mar Chem 39:119–149

    Article  Google Scholar 

  52. Ken PW, Ramli M, Ban CC (2015) An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater 77:370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065

    Article  Google Scholar 

  53. Ward CR, Taylor JC (1996) Quantitative mineralogical analysis of coals from the Callide Basin, Queensland, Australia using X-ray diffractometry and normative interpretation. Int J Coal Geol 30:211–229

    Article  Google Scholar 

  54. Temuujin J, Van Riessen A, Mackenzie KJD (2010) Preparation and characterisation of fly ash based geopolymer mortars. Constr Build Mater 24(10):1906–1910. https://doi.org/10.1016/j.conbuildmat.2010.04.012

    Article  Google Scholar 

  55. Hardjito D, Rangan BV (2005) Development and properties of low-calcium fly ash-based geopolymer concrete. Research report GC, p 94. http://www.geopolymer.org/fichiers_pdf/curtin-flyash-GP-concrete-report.pdf

  56. Kong DLY, Sanjayan JG, Sagoe-crentsil K (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res 37:1583–1589

    Article  Google Scholar 

  57. Palomo A, Ferna A (2005) Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater 86:207–214

    Article  Google Scholar 

  58. Palomo A, Fernandez-jime A (2004) Alkaline activation of fly ashes: NMR study of the reaction products. J Am Ceram Soc 87:1141–1145

    Article  Google Scholar 

  59. Le-ping L, Xue-min C, Shu-heng Q, Jun-li Y, Zhang L (2010) Preparation of phosphoric acid-based porous geopolymers. Appl Clay Sci 50(4):600–603. https://doi.org/10.1016/j.clay.2010.10.004

    Article  Google Scholar 

  60. Wang Y, Dai J, Ding Z, Xu W(2017) Phosphate-based geopolymer: formation mechanism and thermal stability. Mater Lett. https://doi.org/10.1016/j.matlet.2017.01.022

    Article  Google Scholar 

  61. Kouamo H, Henning C (2017a) Applied clay science mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: a comparative study. Appl Clay Sci 140:81–87. https://doi.org/10.1016/j.clay.2017.02.002

    Article  Google Scholar 

  62. Perera D, Blackford M, Latella B, Sasaki Y, Vance E (2008) Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials. J Mater Sci 43:6562–6566

    Article  Google Scholar 

  63. Bai C, Conte A, Colombo P (2016) Author ’ s accepted manuscript frothing. Mater Lett. https://doi.org/10.1016/j.matlet.2016.11.103

    Article  Google Scholar 

  64. Louati S, Baklouti S, Samet B (2016) Acid based geopolymerization kinetics: effect of clay particle size. Appl Clay Sci 132–133:571–578. https://doi.org/10.1016/j.clay.2016.08.007

    Article  Google Scholar 

  65. Alehyen S, Achouri MEL, Taibi M (2017) Characterization, microstructure and properties of fly ash-based geopolymer. J Mater Environ Sci 8(5):1783–1796

    Google Scholar 

  66. van Russen A, Rickard W, Curtin University of Technology, Australia and J. Sanjayan, Monash University, Australia (2009) Geopolymers. In: van Deventer JSJ, Provis JL (eds) Geopolymers: structure, processing, properties and industrial applications, 1st edn. Woodhead Publishing Limited and CRC Press LLC, Padstow, p 461

    Google Scholar 

  67. Thokchom S, Ghosh P, Ghosh S (2009) Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. ARPN J Eng Appl Sci 4(7):28–32

    Google Scholar 

  68. Cui X, Liu L, He Y, Chen J, Zhou J (2011) A novel aluminosilicate geopolymer material with low dielectric loss. Mater Chem Phys 130(1–2):1–4. https://doi.org/10.1016/j.matchemphys.2011.06.039

    Article  Google Scholar 

  69. Hanjitsuwan S, Chindaprasirt P, Pimraksa K (2011) Electrical conductivity and dielectric property of fly ash geopolymer pastes. Int J Miner Metall Mater 18(1):94–99. https://doi.org/10.1007/s12613-011-0406-0

    Article  Google Scholar 

  70. Jumrat S, Chatveera B, Rattanadecho P (2011) Dielectric properties and temperature profile of fly ash-based geopolymer mortar ☆. Int Commun Heat Mass Transfer 38(2):242–248. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.020

    Article  Google Scholar 

  71. Norkhairunnisa M, Muhammad Fariz M (2015) Geopolymer: a review on physical properties of inorganic aluminosilicate coating materials. Mater Sci Forum 803(2014):367–373. https://doi.org/10.4028/www.scientific.net/MSF.803.367

    Article  Google Scholar 

  72. Paper C, Khan I, Khairun A, Universiti A, Petronas T, Petronas UT, … Khan I (2014) Effect of Na/Al and Si/Al ratios on adhesion strength of geopolymers as coating material. Appl Mech Mater 625: 85–89. https://doi.org/10.4028/www.scientific.net/AMM.625.85

    Article  Google Scholar 

  73. Zivica V, Pallou MT, Krizma M (2014) Geopolymer cements and their properties: a review. Build Res J 61(2):85–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Martínez-Luévanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sotelo-Piña, C., Aguilera-González, E.N., Martínez-Luévanos, A. (2019). Geopolymers: Past, Present, and Future of Low Carbon Footprint Eco-materials. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_54

Download citation

Publish with us

Policies and ethics