Skip to main content
Log in

Effects of activator type/concentration and curing temperature on alkali-activated binder based on copper mine tailings

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article investigates the effects of activator type/concentration and curing temperature on alkali-activated binder based on copper mine tailings (MT). Different alkaline activators including sodium hydroxide (NaOH), sodium silicate (SS), and sodium aluminate (SA) at different compositions and concentrations were used and four different curing temperatures, 60, 75, 90, and 120 °C, were considered. Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX), and X-ray diffraction (XRD) were conducted to investigate the effect of these factors on the unconfined compressive strength (UCS), microstructure, and phase composition of the binder. The results indicate that NaOH concentration and curing temperature are two important factors that affect the UCS and micro-structural properties of the alkali-activated MT binder. The optimum curing temperature, i.e., the curing temperature at the maximum UCS, depends on the NaOH concentration, lower optimum curing temperature at smaller NaOH concentration. Addition of aqueous SS to the NaOH solution can lead to strength improvement, with the highest UCS obtained at a SiO2/Na2O ratio of 1.0–1.26. Addition of powder SA to the NaOH solution profoundly delays the setting at 60 °C but improves the UCS at 90 °C. The SEM/EDX results show highly heterogeneous microstructure for the alkali-activated MT binder as evidenced by the variable Si/Al ratios in different phases. The XRD patterns indicate a newly formed crystalline phase, zeolite, in the 90 °C-cured specimens. The results of this study provide useful information for recycling and utilization of copper MT as construction material through the geopolymerization technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Meyer C (2009) Cement Concr Compos 31:601–605

    Article  CAS  Google Scholar 

  2. World Business Council for Sustainable Development (2010) Cement sustainability initiative. http://wbcsdcement.org

  3. Davidovits J (1994) In: Metha PK (ed) Proceedings of V. Mohan Malhotra symposium: concrete technology, past, present and future. ACI SP-144, p 383–397

  4. Malhotra VM (2000) In: Gjorv OE, K Sakai (eds) Concrete technology for a sustainable development in the 21st century. E & FN Spon, London, p 226

  5. McCaffrey R (2002) Climate change and the cement industry. Glob Cem Lime Mag (Environmental Special Issue): 15

  6. Arm M (2003) Mechanical properties of residues as unbound road materials—experimental tests on MSWI bottom ash, crushed concrete and blast furnace slag. KTH Land and Water Resources Engineering, Stockholm

    Google Scholar 

  7. USEPA (2009) Wastes-resource conservation-reduce, reuse, recycle-construction & demolition materials. http://www.epa.gov/epawaste/conserve/rrr/imr/cdm/index.htm

  8. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Constr Build Mater 22(11):2212–2219

    Article  Google Scholar 

  9. Rattanasak U, Chindaprasirt P (2009) Miner Eng 22:1073–1078

    Article  CAS  Google Scholar 

  10. Alonso S, Palomo A (2001) Cem Concr Res 31(1):25–30

    Article  CAS  Google Scholar 

  11. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, Van Deventer JSJ (2005) Colloids Surf A 269:47–58

    Article  CAS  Google Scholar 

  12. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) J Mater Sci 42:2917–2933

    Article  CAS  Google Scholar 

  13. Li Z, Ding Z, Zhang Y (2004) In: Proceedings of international workshop on sustainable development and concrete technology, Beijing, China, p 55

  14. Drechsler M, Graham A (2005) Innovative material technologies: bringing resources sustainability to construction and mining industries. 48th Institute of Quarrying Conference, Adelaide

  15. Shi C, Fernandez-Jimenez A (2006) J Hazard Mater B137:1656–1663

    Article  Google Scholar 

  16. Majidi B (2009) Mater Technol 24(2):79–87

    CAS  Google Scholar 

  17. Giannopoulou IP, Panias D (2006) In: 2nd International conference on advances in mineral resources management and environmental geotechnology, Greece

  18. Southam DC, Brent GF, Felipe F, Carr C, Hart RD, Wright K (2007) Towards more sustainable mine fills—replacement of ordinary Portland cement with geopolymer cements. World Gold Conference, Australia

    Google Scholar 

  19. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Constr Build Mater 22(6):1201–1211

    Article  Google Scholar 

  20. Pacheco-Torgal F, Castro-Gomes J, Jalili S (2010) J Mater Civ Eng 22:897–904

    Article  Google Scholar 

  21. Collins RJ, Ciesielski SK (1994) Recycling and use of waste materials and by-products in highway construction. National Cooperative Highway Research Program Synthesis of Highway Practice 199. Transportation Research Board, Washington, DC

  22. FHWA (Federal Highway Administration) (2008) User guidelines for byproduct and secondary use materials in pavement construction. Report no. FHWA-RD-97-148

  23. Pacheco-Torgal F, Castro-Gomes JP, Jalali S (2008) Constr Build Mater 22:1939–1949

    Article  Google Scholar 

  24. Xu H, Van Deventer JSJ (2000) Int J Miner Process 59(3):247–266

    Article  CAS  Google Scholar 

  25. Chindaprasirt P, Chareerat T, Siricicatnanon V (2007) Cement Concr Compos 29(3):224–229

    Article  CAS  Google Scholar 

  26. Guo X, Shi H, Dick WA (2010) Cement Concr Compos 32:142–147

    Article  CAS  Google Scholar 

  27. Yunfen H, Dongmin W, Wenjuan Z, Hongbo L, Lin W (2009) J Wuhan Univ Technol Mater Sci Ed 24(5):711–715

    Article  Google Scholar 

  28. Villa C, Pecina ET, Torres R, Gómez L (2010) Constr Build Mater 24:2084–2090

    Article  Google Scholar 

  29. Chindaprasirt P, Rattanasak U (2008) In: Technology and innovation for sustainable development conference (TISD2008), p 77

  30. Cheng TW, Chiu JP (2003) Miner Eng 16:205–210

    Article  CAS  Google Scholar 

  31. Provis JL, Yong CZ, Duxson P, Van Deventer JSJ (2009) Colloids Surf A 336:57–63

    Article  CAS  Google Scholar 

  32. Detphan S, Chindaprasirt P (2008) In: Technology and innovation for sustainable development conference (TISD2008), p 111

  33. Ma Y, Hu J, Ye G (2012) J Mater Sci. doi:10.1007/s10853-012-6316-3

    Google Scholar 

  34. Law DW, Adam A, Molyneaux TK, Patnaikuni I (2012) Mater Struc. doi:10.1617/s11527-012-9842-1

    Google Scholar 

  35. Silva PD, Sagoe-Crenstil K, Sirivivatnanon V (2007) Cem Concr Res 37:512–518

    Article  Google Scholar 

  36. Bernal SA, Rodriguez ED, de Gutierrez RM, Provis JL, Delvasto S (2012) J Mater Sci 3(1):99–108

    CAS  Google Scholar 

  37. Lee WKW, Van Deventer JSJ (2002) Colloid Surf 211:115–126

    Article  CAS  Google Scholar 

  38. Duxson P, Lukey GC, Separovic F, Van Deventer JSJ (2005) Ind Eng Chem Res 44:832–839

    Article  CAS  Google Scholar 

  39. Sindhunata Van, Deventer JSJ, Lukey GC, Xu H (2006) Ind Eng Chem Res 45(10):3559–3568

    Article  CAS  Google Scholar 

  40. Fernandez-Jimenez A, Palomo A, Sobrados I, Sanz J (2006) Microporous Mesoporous Mater 91(1–3):111–119

    Article  CAS  Google Scholar 

  41. Rowles M, O’Connor B (2003) J Mater Chem 13:1161–1165

    Article  CAS  Google Scholar 

  42. Schmucker M, MacKenzie KJD (2005) Ceram Int 31(3):433–437

    Article  Google Scholar 

  43. Hajimohammadi A, Provis JL, Van Deventer JSJ (2008) Ind Eng Chem Res 47(23):9396–9405

    Article  CAS  Google Scholar 

  44. Krivenko PV, Kovalchuk GY (2002) In: International conference on geopolymer-2002—turn potential into profit, Melbourne, October 28–29

  45. Fletcher RA, MacKenzie KJD, Nicholson CL, Shimada S (2005) J Eur Ceram Soc 25(9):1471–1477

    Article  CAS  Google Scholar 

  46. Phair JW, Van Deventer JSJ (2002) Ind Eng Chem Res 41:4242–4251

    Article  CAS  Google Scholar 

  47. Brew DRM, MacKenzie KJD (2007) J Mater Sci 42:3990–3993

    Article  CAS  Google Scholar 

  48. Verdolotti L, Iannace S, Lavorgna M, Lamanna R (2008) J Mater Sci 43:865–873

    Article  CAS  Google Scholar 

  49. Temuujin J, Minjigmaa A, Rickard W, Lee M, Williams I, Van Riessen A (2009) Appl Clay Sci 46:265–270

    Article  CAS  Google Scholar 

  50. Kawano M, Tomita K (1997) Clays Clay Miner 45(3):365–377

    Article  CAS  Google Scholar 

  51. Ahmari S, Zhang L (2012) Constr Build Mater 29:323–331

    Article  Google Scholar 

  52. Zhang L, Ahmari S, Zhang S (2011) Constr Build Mater 25(9):3773–3781

    Article  Google Scholar 

  53. Chen C, Gong W, Lutze W, Pegg IL (2011) J Mater Sci 46(9):3073–3083. doi:10.1007/s10853-010-5186-9

    Article  CAS  Google Scholar 

  54. Khale D, Chaudhary R (2007) J Mater Sci 42:729–746. doi:10.1007/s10853-006-0401-4

    Article  CAS  Google Scholar 

  55. Panagiotopoulou CH, Kontori E, Perraki TH, Kakali G (2007) J Mater Sci 42:2967–2973. doi:10.1007/s10853-006-0531-8

    Article  CAS  Google Scholar 

  56. Thakur RN, Ghosh S (2009) ARPN J Eng Appl Sci 4(4):68–74

    Google Scholar 

  57. Yao X, Zhang Z, Zhua H, Chen Y (2009) Thermochim Acta 493(1–2):49–54

    Article  CAS  Google Scholar 

  58. Cyr M, Idir R, Poinot T (2012) J Mater Sci 47(6):2782–2797. doi:10.1007/s10853-011-6107-2

    Article  CAS  Google Scholar 

  59. Muñiz-Villarreal MS, Manzano-Ramírez A, Sampieri-Bulbarela S, Gasca-Tirado JR, Reyes-Araiza JL, Rubio-Ávalos JC, Pérez-Bueno JJ, Apatiga LM, Zaldivar-Cadena A, Amigó-Borrás V (2010) The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Mater Lett 65:995

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Science Foundation under Grant No. CMMI-0969385, the University of Arizona Faculty Seed Grants Program, and a local mine company in Tucson, AZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmari, S., Zhang, L. & Zhang, J. Effects of activator type/concentration and curing temperature on alkali-activated binder based on copper mine tailings. J Mater Sci 47, 5933–5945 (2012). https://doi.org/10.1007/s10853-012-6497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6497-9

Keywords

Navigation