Cullen JM, Allwood JM (2010) Theoretical efficiency limits for energy conversion devices. Energy 35:2059–2069. https://doi.org/10.1016/J.ENERGY.2010.01.024
Article
Google Scholar
Forman C, Muritala IK, Pardemann R, Meyer B (2016) Estimating the global waste heat potential. Renew Sustain Energy Rev 57:1568–1579. https://doi.org/10.1016/J.RSER.2015.12.192
Article
Google Scholar
Bianchi G, Panayiotou GP, Aresti L, Kalogirou SA (2019) Estimating the waste heat recovery in the European Union Industry. Energy Ecol Environ. https://doi.org/10.1007/s40974-019-00130-9
Article
Google Scholar
Making the right choice–organic rankine cycle compared to steam cycle. https://www.host.nl/en/orc-vs-steamcycle/
Marchionni M, Bianchi G, Tsamos KM, Tassou SA (2017) Techno-economic comparison of different cycle architectures for high temperature waste heat to power conversion systems using CO2 in supercritical phase. Energy Procedia 123:305–312. https://doi.org/10.1016/j.egypro.2017.07.253
Article
Google Scholar
Ahn Y, Lee JI, Lee JI (2016) A study of s-CO2 power cycle for waste heat recovery using isothermal compressor. Vol. 9 Oil Gas Appl. Supercrit. CO2 Power Cycles; Wind Energy, vol 9, American Society of Mechanical Engineers (ASME), p V009T36A012. https://doi.org/10.1115/gt2016-57151
Turchi CS, Ma Z, Dyreby J (2012) Supercritical carbon dioxide power cycle configurations for use in concentrating solar power systems. Proc ASME Turbo Expo 5:967–973. https://doi.org/10.1115/GT2012-68932
Article
Google Scholar
Conboy TM, Wright SA, Ames DE, Lewis TG (2012) CO2-based mixtures as working fluids for geothermal turbines. Sandia National Laboratories, Albuquerque. https://doi.org/10.2172/1049477
Book
Google Scholar
Bianchi G, Saravi SS, Loeb R, Tsamos KM, Marchionni M, Leroux A (2019) Design of a high-temperature heat to power conversion facility for testing supercritical CO2 equipment and packaged power units. Energy Procedia 161:421–428. https://doi.org/10.1016/J.EGYPRO.2019.02.109
Article
Google Scholar
Moisseytsev A, Sienicki JJ (2009) Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. Nucl Eng Des 239:1362–1371. https://doi.org/10.1016/j.nucengdes.2009.03.017
Article
Google Scholar
Johnson G, McDowell M (2009) Issues associated with coupling supercritical CO2 power cycles to nuclear, solar and fossil fuel heat sources. In: Proceedings of supercrit CO2 power cycle 2009
Le Moullec Y (2013) Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle. Energy. https://doi.org/10.1016/j.energy.2012.10.022
Article
Google Scholar
Allam R, Martin S, Forrest B, Fetvedt J, Lu X, Freed D et al (2017) Demonstration of the Allam Cycle: an update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture. Energy Procedia 114:5948–5966. https://doi.org/10.1016/j.egypro.2017.03.1731
Article
Google Scholar
Sabau A, Yin H, Qualls A, McFarlane J (2011) Investigations of supercritical CO2 Rankine cycles for geothermal power plants. Oak Ridge National Lab, Oak Ridge
Google Scholar
Turchi CS, Ma Z, Neises TW, Wagner MJ (2013) Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. J Sol Energy Eng 135:41007. https://doi.org/10.1115/1.4024030
Article
Google Scholar
Iverson BD, Conboy TM, Pasch JJ, Kruizenga AM (2013) Supercritical CO2 Brayton cycles for solar-thermal energy. Appl Energy 111:957–970. https://doi.org/10.1016/j.apenergy.2013.06.020
Article
Google Scholar
Hung T (2001) Waste heat recovery of organic Rankine cycle using dry fluids. Energy Convers Manag. https://doi.org/10.1016/S0196-8904(00)00081-9
Article
Google Scholar
Dai X, Shi L, Qian W (2019) Review of the working fluid thermal stability for organic rankine cycles. J Therm Sci 28:597–607. https://doi.org/10.1007/s11630-019-1119-3
Article
Google Scholar
Zywica G, Kaczmarczyk TZ, Ihnatowicz E (2016) A review of expanders for power generation in small-scale organic Rankine cycle systems: performance and operational aspects. Proc Inst Mech Eng Part A J Power Energy 230:669–684. https://doi.org/10.1177/0957650916661465
Article
Google Scholar
Weiß AP (2015) Volumetric expander versus turbine–which is the better choice for small Orc plants. In: 3rd international seminar on ORC power systems, Oktober (pp. 12–14)
Tartière T, Astolfi M (2017) A world overview of the organic rankine cycle market. Energy Procedia 129:2–9. https://doi.org/10.1016/j.egypro.2017.09.159
Article
Google Scholar
Weiß, A. P. (2015). Volumetric expander versus turbine–which is the better choice for small ORC plants. In 3rd International Seminar on ORC Power Systems, Oktober (pp. 12-14)
Tanuma T (2016) Advances in steam turbines for modern power plants. Elsevier Inc, Amsterdam
Google Scholar
Li C, Wang H (2016) Power cycles for waste heat recovery from medium to high temperature flue gas sources —from a view of thermodynamic optimization. Appl Energy 180:707–721. https://doi.org/10.1016/j.apenergy.2016.08.007
Article
Google Scholar
Smith IK (1993) Development of the trilateral flash cycle system: part 1: fundamental considerations. Proc Inst Mech Eng Part A J Power Energy 207:179–194. https://doi.org/10.1243/PIME_PROC_1993_207_032_02
Article
Google Scholar
Bianchi G, McGinty R, Oliver D, Brightman D, Zaher O, Tassou SA et al (2017) Development and analysis of a packaged trilateral flash cycle system for low grade heat to power conversion applications. Therm Sci Eng Prog 4:113–121. https://doi.org/10.1016/J.TSEP.2017.09.009
Article
Google Scholar
Marchionni M, Zaher O, Miller J (2019) Numerical investigations of a trilateral flash cycle under system off-design operating conditions. Energy Procedia 161:464–471. https://doi.org/10.1016/J.EGYPRO.2019.02.070
Article
Google Scholar
Kung SC, Shingledecker JP, Thimsen D, Wright IG, Tossey BM, Sabau AS (2016) Oxidation/corrosion in materials for supercritical CO2 power cycles
Marchionni M, Bianchi G, Tassou SA (2018) Techno-economic assessment of Joule–Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state. Energy 148:1140–1152. https://doi.org/10.1016/J.ENERGY.2018.02.005
Article
Google Scholar
De Miol M, Bianchi G, Henry G, Holaind N, Tassou SA, Leroux A (2018) Design of a single-shaft compressor, generator, turbine for small-scale supercritical CO2 systems for waste heat to power conversion applications. https://doi.org/10.17185/duepublico/46086
Mehos M, Turchi CS, Jorgenson J, Denholm P, Ho C, Armijo K (2016) On the path to sunshot-advancing concentrating solar power technology. Perform Dispatchability. https://doi.org/10.2172/1344199
Article
Google Scholar
Held TJ 2014 Initial test results of a megawatt-class supercritical CO2 heat engine. In: 4th international symposium CO2 power cycles
Bachu S, Freund P, Gupta M, Simbeck D, Thambimuthu K (2005) Annex I: properties of CO2 and carbon-based fuels. IPCC special report on carbon dioxide capture and storage. Cambridge University Press, New York
Angelino G (1968) Carbon dioxide condensation cycles for power production. ASME J Eng Power 90:287–296. https://doi.org/10.1115/1.3609190
Article
Google Scholar
Kacludis A, Lyons S, Nadav D, Zdankiewicz E (2012) Waste heat to power (WH2P) applications using a supercritical CO2-based power cycle. Power-Gen Int 2:1–10
Google Scholar
Persichilli M, Kacludis A, Zdankiewicz E, Held T (2012) Supercritical CO2 power cycle developments and commercialization: why sCO2 can displace steam steam. Power-Gen India Cent Asia 2012:19–21
Google Scholar
Nami H, Mahmoudi SMS, Nemati A (2017) Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2). Appl Therm Eng 110:1315–1330. https://doi.org/10.1016/j.applthermaleng.2016.08.197
Article
Google Scholar
Wright SA, Davidson CS, Scammell WO (2016) Thermo-economic analysis of four sCO2 waste heat recovery power systems
Huck P, Freund S, Lehar M, Peter M (2016) Performance comparison of supercritical CO2 versus steam bottoming cycles for gas turbine combined cycle applications
Saari H, Petrusenko R, Zanganeh K, Parks C, Maybee B (2014) Corrosion testing of high temperature materials in supercritical carbon dioxide. In: 4th international symposium supercritical CO2 power cycles, pp 1–13
Yin H, Sabau AS, Conklin JC, McFarlane J, Lou Qualls A (2013) Mixtures of SF6-CO2 as working fluids for geothermal power plants. Appl Energy 106:243–253. https://doi.org/10.1016/j.apenergy.2013.01.060
Article
Google Scholar
Jeong WS, Jeong YH (2013) Performance of supercritical Brayton cycle using CO2-based binary mixture at varying critical points for SFR applications. Nucl Eng Des 262:12–20. https://doi.org/10.1016/j.nucengdes.2013.04.006
Article
Google Scholar
Wright SA, Radel RF, Vernon ME, Rochau GE, Pickard PS (2010) Operation and analysis of a supercritical CO2 Brayton Cycle. https://doi.org/10.2172/984129
Brun K, Friedman P, Dennis R (2017) Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles. Woodhead Publishing an imprint of Elsevier, Amsterdam
Google Scholar
Beckman K, Patel V (2000) Review of API versus AGMA gear standards/rating, data sheet completion, and gear selection guidelines. In: Proceeding of the twenty-ninth
Wilkes J, Allison T, Schmitt J, Bennett J. Application of an integrally geared compander to an SCO2 recompression Brayton cycle. In: Proceeding 5th international symposium 2016
Kalra C, Hofer D, Sevincer E, Moore J, Brun K (2014) Development of high efficiency hot gas turbo-expander for optimized CSP supercritical CO2 power block operation. In: The 4th international symposium-supercritical CO2 power cycles
Ertas B (2009) Compliant hybrid journal bearings using integral wire mesh dampers. In: Turbo Expo Power Land, Sea, Air, p 12. https://doi.org/10.1115/gt2008-50984
Delgado A (2015) Experimental identification of dynamic force coefficients for a 110 mm compliantly damped hybrid gas bearing. J Eng Gas. https://doi.org/10.1115/1.4029203
Article
Google Scholar
Thatte A, Loghin A, Shin Y, Ananthasayanam B (2016) Performance and life characteristics of hybrid gas bearing in a 10 MW supercritical CO2 turbine. Vol. 9 Oil Gas Appl. Supercrit. CO2 Power Cycles; Wind Energy, ASME, p V009T36A018. https://doi.org/10.1115/gt2016-57695
Sienicki J, Moisseytsev A, Fuller R, Wright S (2011) Scale dependencies of supercritical carbon dioxide Brayton cycle technologies and the optimal size for a next-step supercritical CO2 cycle. 2011 Supercrit CO2
Thatte A, Dheeradhada V (2016) Coupled physics performance predictions and risk assessment for dry gas seal operating in MW-scale supercritical CO2 turbine. Vol. 9 Oil Gas Appl. Supercrit. CO2 Power Cycles; Wind Energy, ASME, p V009T36A017. https://doi.org/10.1115/gt2016-57670
Bidkar RA, Sevincer E, Wang J, Thatte AM, Mann A, Peter M et al (2016) Low-leakage shaft-end seals for utility-scale supercritical CO2 turboexpanders. J Eng Gas Turbines Power 139:22503. https://doi.org/10.1115/1.4034258
Article
Google Scholar
Pasch J, Conboy T, Fleming D, Rochau G (2012) Supercritical CO2 Recompression Brayton Cycle: Completed Assembly. Sandia Report, SAND, 9546, 2012
Muhammad HA, Lee B, Lee G, Cho J, Baik Y-J (2018) Investigation of leakage reinjection system for supercritical CO2 power cycle using heat pump. Renew Energy. https://doi.org/10.1016/J.RENENE.2018.10.059
Article
Google Scholar
Lettieri C, Baltadjiev N, Casey M, Spakovszky Z (2014) Low-flow-coefficient centrifugal compressor design for supercritical CO2. J Turbomach 136:81008. https://doi.org/10.1115/1.4026322
Article
Google Scholar
Baltadjiev ND, Lettieri C, Spakovszky ZS (2015) An investigation of real gas effects in supercritical CO2 centrifugal compressors. J Turbomach 137:91003. https://doi.org/10.1115/1.4029616
Article
Google Scholar
Poerner M, Musgrove G, Beck G (2016) Liquid CO2 formation, impact, and mitigation at the inlet to a supercritical CO2 compressor. Vol. 9 Oil Gas Appl. Supercrit. CO2 Power Cycles; Wind Energy, ASME, p V009T36A005. https://doi.org/10.1115/gt2016-56513
Clementoni EM, Cox TL, King MA, Rahner KD (2017) Transient power operation of a supercritical carbon dioxide brayton cycle. Vol. 9 Oil Gas Appl. Supercrit. CO2 Power Cycles; Wind Energy, ASME, p V009T38A001. https://doi.org/10.1115/gt2017-63056
Clementoni EM, Cox TL, Sprague CP (2014) Startup and operation of a supercritical carbon dioxide brayton cycle. J Eng Gas Turbines Power 136:V008T34A006. https://doi.org/10.1115/gt2013-94275
Article
Google Scholar
Moore J, Evans N, Kalra C, Brun K, Director P, Bueno P et al (2015) Development of A1 MWE supercritical CO2 Brayton cycle test loop. ASME Turbo Expo 2015 turbine technical conference exposition, p 11. https://doi.org/10.1115/GT2015-43771
Cho J, Shin H, Cho J, Baik YJ, Choi B, Roh C, et al (2018) Design, flow simulation, and performance test for a partialadmission axial turbine under supercritical CO2 condition. In: Proceedings of the ASME turbo expo, vol 9. American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/gt2018-76508
Cha JE, Bae SW, Lee J, Cho SK, Lee JI, Park JH (2016) Operation results of a closed supercritical CO2 simple Brayton cycle. In: 5th international symposium CO2 power cycles
Cho J, Shin H, Ra HS, Lee G, Roh C, Lee B, et al. (2016) Development of the supercritical carbon dioxide power cycle experimental loop in kier.In: Proceedings of the ASME turbo expo, vol 9. American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/gt2016-57460
De Miol M, Bianchi G, Henry G, Holaind N, Tassou SA, Leroux A (2018) Design of a single-shaft compressor, generator, turbine for small-scale supercritical CO2 systems for waste heat to power conversion applications. In: 2nd European sCO2 conference 2018: 30–31 August 2018, Essen, Germany, pp 42–49. https://doi.org/10.17185/duepublico/46086
Hacks A, Schuster S, Dohmen HJ, Benra FK, Brillert D (2018) Turbomachine design for supercritical carbon dioxide within the sCO2-HeRo.eu project. J Eng Gas Turbines Power 10(1115/1):4040861
Google Scholar
Utamura M, Hasuike H, Ogawa K, Yamamoto T, Fukushima T, Watanabe T et al (2012) Demonstration of supercritical CO2 closed regenerative Brayton cycle in a bench scale experiment. Proc ASME Turbo Expo 3:155–164. https://doi.org/10.1115/GT2012-68697
Article
Google Scholar
Marchionni M, Chai L, Bianchi G, Tassou SA (2019) Numerical modelling and transient analysis of a printed circuit heat exchanger used as recuperator for supercritical CO2 heat to power conversion systems. Appl Therm Eng 161:114190. https://doi.org/10.1016/j.applthermaleng.2019.114190
Article
Google Scholar
Sienicki JJ, Moisseytsev A, Lv Q (2017) Dry air cooling and the sCO2 brayton cycle. Vol. 9 Oil Gas Appl. Supercrit. CO2 Power Cycles; Wind Energy, vol. 9, American Society of Mechanical Engineers (ASME), p V009T38A015. https://doi.org/10.1115/gt2017-64042
Brun K, Friedman P, Dennis R (2017) Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles. Woodhead Publishing, Sawston
Google Scholar
Musgrove GO, Pierres R Le, Nash J (2014) Heat exchangers for supercritical CO2 power cycle applications. In: 4th international symposium-supercritical CO2 power cycles, pp 1–61
Musgrove GO, Sullivan S, Shiferaw D, Pittaway C, Carrero J, Le Pierres R et al (2014) Heat exchangers for supercritical CO2 power cycle applications tutorial
Carlson M, Kruizenga AM, Schalansky C, Fleming DF (2014) Sandia progress on advanced heat exchangers for sCO2 Brayton cycles.In: 4th international symposium-supercritical CO2 power cycles
Marchionni M, Bianchi G, Karvountzis-Kontakiotis A, Pesyridis A, Tassou SA (2018) An appraisal of proportional integral control strategies for small scale waste heat to power conversion units based on organic Rankine cycles. Energy 163:1062–1076. https://doi.org/10.1016/J.ENERGY.2018.08.156
Article
Google Scholar
Fourspring PM, Nehrbauer JP, Sullivan S, Nash J (2014) Testing of compact recuperators for a supercritical CO2 Brayton power cycle. In: 4th international symposium-supercritical CO2 power cycles
Parks CJ (2013) Corrosion of candidate high temperature alloys in supercritical carbon dioxide. Doctoral dissertation, Carleton University
Moore R, Conboy T (2012) Metal corrosion in a supercritical carbon dioxide–liquid sodium power cycle. https://doi.org/10.2172/1039408
Rouillard F, Charton F, Moine G (2011) Corrosion behavior of different metallic materials in supercritical carbon dioxide at 550 C and 250 bars. Corros J Sci Eng. https://doi.org/10.5006/1.3628683
Article
Google Scholar
Dunlevy MW (2009) An exploration of the effect of temperature on different alloys in a supercritical carbon dioxide environment. Doctoral dissertation, Massachusetts Institute of Technology
Gibbs, JP (2010) Corrosion of various engineering alloys in supercritical carbon dioxide. Doctoral dissertation, Massachusetts Institute of Technology
Sridharan K, Anderson M (2013) Corrosion in supercritical carbon dioxide: materials, environmental purity, surface treatments, and flow issues (No. 10-872). Battelle Energy Alliance, LLC. https://doi.org/10.2172/1111547
Poláčková J, Petrů J, Janák M, Berka J, Krausová A (2017) Materials for use in calcium looping technology for CCS–corrosion processes in high-temperature CO2. Koroze a ochrana materialu 61(4):143–148. https://doi.org/10.1515/kom-2017-0017
Article
Google Scholar
Lim JY, McKrell TJ, Eastwick G, Ballinger RG (2008) Corrosion of materials in supercritical carbon dioxide environments. In: Corros. NACE International corrosion conference Expo, 63. NACE International, p 18
Clementoni EM, Cox TL (2014) Steady-state power operation of a supercritical carbon dioxide brayton CYCLE. In: 4th International Symposium on Supercritical CO2 power cycles. https://doi.org/10.1115/gt2014-25336
Cho J, Shin H, Cho J, Choi B, Roh C, Lee B et al (2019) Development and power generating operation of the supercritical carbon dioxide power cycle experimental test loop in Kier. https://doi.org/10.17185/duepublico/48905
Hacks AJ, Vojacek A, Dohmen HJ, Brillert D, Vojacek A et al (2018) Experimental investigation of the sCO2-HeRo compressor. https://doi.org/10.17185/duepublico/46088
Vojacek A, Hacks AJ, Melichar T, Frybort O, Hájek P (2018) Challenges in supercritical CO2 power cycle technology and first operational experience at CVR. https://doi.org/10.17185/duepublico/46075