Skip to main content

Advertisement

Log in

Review of the Working Fluid Thermal Stability for Organic Rankine Cycles

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The organic Rankine cycle (ORC) is an efficient power generation technology and has been widely used for renewable energy utilization and industrial waste heat recovery. Thermal stability is a significant property of ORC working fluids and is the primary limitation for working fluid selection and system design. This paper presents a review of the working fluid thermal stability for ORCs, including an analysis of the main theoretical method for thermal stability, a summary of the main experimental method for thermal stability, a summary of the decomposition experimental results for working fluids, and a discussion of the decomposition influence on ORC systems. Further research trends of thermal stability are also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shokati N., Ranjbar F., Yari M., Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study. Renewable Energy, 2015, 83: 527–542.

    Article  Google Scholar 

  2. Zhang X.J., Wu L.J., Wang X.L., Ju G.D., Comparative study of waste heat steam SRC, ORC and S-ORC power generation systems in medium-low temperature. Applied Thermal Engineering, 2016, 106: 1427–1439.

    Article  Google Scholar 

  3. Yari M., Mehr A.S., Zare V., Mahmoudi S.M.S., Rosen M.A., Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source. Energy, 2015, 83: 712–722.

    Article  Google Scholar 

  4. Li L., Ge Y.T., Luo X., Tassou S.A., Thermodynamic analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low grade heat to power energy conversion. Applied Thermal Engineering, 2016, 106: 1290–1299.

    Article  Google Scholar 

  5. Zare. V., Mahmoudi S.M.S., A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor. Energy, 2015, 79: 398–406.

    Article  Google Scholar 

  6. Liu L.C., Zhu T., Gao N.P., Gan Z.X., A review of modeling approaches and tools for the off-design simulation of organic Rankine cycle. Journal of Thermal Science, 2018, 27(4): 305–320.

    Article  ADS  Google Scholar 

  7. Delgado-Torres A.M., Garcia-Rodriguez L., Design recommendations for solar organic Rankine cycle (ORC)–powered reverse osmosis (RO) desalination. Renewable & Sustainable Energy Reviews, 2013, 16(1): 44–53.

    Article  Google Scholar 

  8. Yildirima D., Ozgener L., Thermodynamics and exergoeconomic analysis of geothermal power plants. Renewable and Sustainable Energy Reviews, 2014, 16(8): 6438–6454.

    Article  Google Scholar 

  9. Lecompte S., Huisseune H., Den Broek M.V., Vanslambrouck B., De Paepe M., Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renewable & Sustainable Energy Reviews, 2015, 47: 448–461.

    Article  Google Scholar 

  10. Campana F., Bianchi M., Branchini L., De Pascale A., Peretto A., Baresi M., Fermi A., Rossetti N., Vescovo R., ORC waste heat recovery in European energy intensive industries: Energy and GHG savings. Energy Conversion and Management, 2013, 76: 244–252.

    Article  Google Scholar 

  11. Prando D., Renzi M., Gasparella A., Baratieri M., Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator. Applied Thermal Engineering, 2015, 79: 98–107.

    Article  Google Scholar 

  12. Tartière T., Astolfi M., A world overview of the organic Rankine cycle market. Energy Procedia, 2017, 129: 2–9.

    Article  Google Scholar 

  13. Zhou C., Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles. Energy Conversion and Management, 2014, 81: 72–82.

    Article  Google Scholar 

  14. Braimakis K., Preißinger M., Brüggemann D., Karellas S., Panopoulos K., Low grade waste heat recovery with subcritical and supercritical Organic Rankine Cycle based on natural refrigerants and their binary mixtures. Energy, 2015, 88: 80–92.

    Article  Google Scholar 

  15. Kosmadakis G., Manolakos D., Papadakis G., Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions. Applied Thermal Engineering, 2016, 92: 1–7.

    Article  Google Scholar 

  16. Vetter C., Wiemer H.J., Kuhn D., Comparison of sub- and supercritical Organic Rankine Cycles for power generation from low-temperature/low-enthalpy geothermal wells, considering specific net power output and efficiency. Applied Thermal Engineering, 2013, 51: 871–879.

    Article  Google Scholar 

  17. Drescher U., Brüggemann D., Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Applied Thermal Engineering, 2007, 27(1): 223–228.

    Article  Google Scholar 

  18. Papadopoulos A.I., Stijepovic M., Linke P., On the systematic design and selection of optimal working fluids for Organic Rankine Cycles. Applied Thermal Engineering, 2010, 30(6): 760–769.

    Article  Google Scholar 

  19. Angelino G., Paliano P.C., Multicomponent working fluids for Organic Rankine Cycles (ORCs). Energy, 1998, 23(6): 449–463.

    Article  Google Scholar 

  20. Heberle F., Brüggemann D., Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation. Applied Thermal Engineering, 2010, 30(11): 1326–1332.

    Article  Google Scholar 

  21. Guo T., Wang H.X., Zhang S.J., Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system. Energy Conversion and Management, 2011, 52(6): 2384–2391.

    Article  Google Scholar 

  22. Galloni E., Fontana G., Staccone S., Design and experimental analysis of a mini ORC (organic Rankine cycle) power plant based on R245fa working fluid. Energy, 2015, 90: 768–775.

    Article  Google Scholar 

  23. Shu G.Q., Li X.N., Tian H., Liang X.Y., Wei H.Q., Wang X., Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle. Applied Energy, 2014, 119: 204–217.

    Article  Google Scholar 

  24. Liu Q., Duan Y.Y., Yang Z., Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids. Energy, 2013, 63: 123–132.

    Article  Google Scholar 

  25. Qiu G., Selection of working fluids for micro-CHP systems with ORC. Renewable Energy, 2013, 48: 565–570.

    Article  Google Scholar 

  26. Gao W., Li H., Xu G., Working fluid selection and preliminary design of a solar organic Rankine cycle system. Environmental Progress, 2015, 34(2): 619–626.

    Google Scholar 

  27. Eyerer S., Wieland C., Vandersickel A., Spliethoff H., Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization. Energy, 2016, 103: 660–671.

    Article  Google Scholar 

  28. Molés F., Navarro-Esbrí J., Peris B., Mota-Babiloni A., Barragán-Cervera Á., Kontomaris K., Low GWP alternatives to HFC-245fa in Organic Rankine Cycles for low temperature heat recovery: HCFO-1233zd-E and HFO-1336mzz-Z. Applied Thermal Engineering, 2014, 71(1): 204–212.

    Article  Google Scholar 

  29. Curran H.M., Use of organic working fluids in Rankine engines. Columbia, MD (USA): Hittman Associates, Inc., 1979, pp.: 2–3.

    Book  Google Scholar 

  30. Badr O., Probert S.D., O’Callaghan P.W., Selecting a working fluid for a Rankine-cycle engine. Applied Energy, 1985, 21: 1–42.

    Article  Google Scholar 

  31. Doty F.D., Shevgoor S., A dual-source organic Rankine cycle (DORC) for improved efficiency in conversion of dual low-and mid-grade heat sources. ASME 2009 3rd International Conference on Energy Sustainability. San Francisco, US, 2009.

    Google Scholar 

  32. Schroeder D.J., Leslie N., Organic Rankine cycle working fluid considerations for waste heat to power applications. ASHRAE Transactions, 2010, 116(1): 526–533.

    Google Scholar 

  33. Dai X.Y., Shi L., An Q.S., Qian W.Z., Chemical kinetics method for evaluating the thermal stability of organic Rankine cycle working fluids. Applied Thermal Engineering, 2016, 100: 708–713.

    Article  Google Scholar 

  34. Zhang H., Liu C., Xu X.X., Li Q.B., Mechanism of thermal decomposition of HFO-1234yf by DFT study. International Journal of Refrigeration, 2017, 74: 399–411.

    Article  Google Scholar 

  35. Cao Y., Liu C., Zhang H., Xu X.X., Li Q.B., Thermal decomposition of HFO-1234yf through ReaxFF molecular dynamics simulation. Applied Thermal Engineering, 2017, 126: 330–338.

    Article  Google Scholar 

  36. Huo E.G., Liu C., Xu X.X., Dang C.B., A ReaxFF-based molecular dynamics study of the pyrolysis mechanism of HFO-1336mzz(Z). International Journal of Refrigeration, 2017, 83: 118–130.

    Article  Google Scholar 

  37. Huo E.G., Liu C., Xu X.X., Li Q.B., Dang C.B., A ReaxFF-based molecular dynamics study of the oxidation decomposition mechanism of HFO-1336mzz(Z). International Journal of Refrigeration, 2018, 93: 249–258.

    Article  Google Scholar 

  38. Dai X.Y., Shi L., An Q.S., Qian W.Z., Dissociation energy prediction method for working fluid thermal stability. Journal of Engineering Thermophysics, 2018, 39(4): 707–711. (in Chinese)

    Google Scholar 

  39. Erhart T.G., Gölz J., Eicker U., Van Den Broek M., Working fluid stability in large-scale organic Rankine cycle-units using siloxanes - long-term experiences and fluid recycling. Energies, 2016, 9(6): 422.

    Article  Google Scholar 

  40. Ginosar D.M., Petkovic L.M., Guillen D.P., Thermal stability of cyclopentane as an organic Rankine cycle working fluid. Energy & Fuels, 2011, 25(9): 4138–4144.

    Article  Google Scholar 

  41. Kontomaris K., Leck T.J., Low GWP refrigerants for centrifugal chillers. ASHRAE Annual Conference, Louisville, US, 2009.

    Google Scholar 

  42. Kontomaris K., HFO-1336mzz-Z: High temperature chemical stability and use as a working fluid in organic Rankine cycles. International Refrigeration and Air Conditioning Conference, West Lafayette, US, 2014.

    Google Scholar 

  43. Minor B., Kontomaris K., Hydutsky B., Nonflammable low GWP working fluid for organic Rankine cycles. ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 2014.

    Google Scholar 

  44. Macchi E., Astolfi M., Organic Rankine cycle (ORC) power systems-technologies and applications. Woodhead Publishing Series in Energy, Elsevier, 2017

    Google Scholar 

  45. Pasetti M., Invernizzi C.M., Iora P., Thermal stability of working fluids for organic Rankine cycles: an improved survey method and experimental results for cyclopentane, isopentane and n-butane. Applied Thermal Engineering, 2014, 73(1): 764–774.

    Article  Google Scholar 

  46. Calderazzi L., DiPaliano P.C., Thermal stability of R-134a, R-141b, R-13I1, R-7146, R-125 associated with stainless steel as a containing material. International Journal of Refrigeration, 1997, 20(6): 381–389.

    Article  Google Scholar 

  47. Angelino G., Invernizzi C., Experimental investigation on the thermal stability of some new zero ODP refrigerants. International Journal of Refrigeration, 2003, 26(1): 51–58.

    Article  Google Scholar 

  48. Invernizzi C.M., Iora P., Bonalumi D., Macchi E., Roberto R., Caldera M., Titanium tetrachloride as novel working fluid for high temperature Rankine Cycles: Thermodynamic analysis and experimental assessment of the thermal stability. Applied Thermal Engineering, 2016, 107: 21–27.

    Article  Google Scholar 

  49. Dai X.Y., Shi L., An Q.S., Qian W.Z., Screening of hydrocarbons as supercritical ORCs working fluids by thermal stability. Energy Conversion and Management, 2016, 126: 632–637.

    Article  Google Scholar 

  50. Dai X.Y., Shi L., An Q.S., Qian W.Z., Thermal stability of some hydrofluorocarbons as supercritical ORCs working fluids. Applied Thermal Engineering, 2018, 128: 1095–1101.

    Article  Google Scholar 

  51. Invernizzi C.M., Pasini A., Thermodynamic performances of a new working fluid for power cycles. La Termotecnica LIV, 2000, pp.: 87–92. (In Italian)

    Google Scholar 

  52. Marchionni G., Petricci S., Guarda P. A., Spataro G., Pezzin G., The comparison of thermal stability of some hydrofluoroethers and hydrofluoropolyethers. Journal of Fluorine Chemistry, 2004, 125(7): 1081–1086.

    Article  Google Scholar 

  53. Kontomaris K., Minor B., Hydutsky B., Low GWP working fluid for organic Rankine cycles. 2nd International Seminar on ORC Power Systems, Rotterdam, Netherlands, 2013.

    Google Scholar 

  54. Invernizzi C.M., Iora P., Preißinger M., Manzolini G., HFOs as substitute for R-134a as working fluids in ORC power plants: A thermodynamic assessment and thermal stability analysis. Applied Thermal Engineering, 2016, 103: 790–797.

    Article  Google Scholar 

  55. Andersen W.C., Bruno T.J., Rapid screening of fluids for chemical stability in organic Rankine cycle applications. Industrial & Engineering Chemistry Research, 2005, 44(15): 5560–5566.

    Article  Google Scholar 

  56. Preißinger M., Brüggemann D., Thermal stability of Hexamethyldisiloxane (MM) for high temperature organic Rankine cycle (ORC). Energies, 2016, 9(3):183.

    Article  Google Scholar 

  57. Keulen L., Landolina C., Spinelli A., Iora P., Invernizzi C., Lietti L., Guardone A., Design and commissioning of a thermal stability test-rig for mixtures as working fluids for ORC applications. Energy Procedia, 2017, 129: 176–183.

    Article  Google Scholar 

  58. Lasala S., Invernizzi C.M., Iora P., Chiesa P., Macchi E., Thermal stability analysis of perfluorohexane. Energy Procedia, 2015, 75: 1575–1582.

    Article  Google Scholar 

  59. Fabuss M.A., Borsanyi A.S., Fabuss B.M., Smith J.O., Thermal stability studies of pure hydrocarbons in a high pressure lsoteniscope. Journal of Chemical and Engineering Data, 1963, 8(1): 64–69.

    Article  Google Scholar 

  60. Johns I.B., Mcelhill E.A., Smith J.O., Thermal stability of organic compounds. Industrial & Engineering Chemistry Product Research and Development, 1962, 1(1): 2–6.

    Article  Google Scholar 

  61. Yamamoto T., Yasuhara A., Shiraishi F., Kaya K., Abe T., Thermal decomposition of halon alternatives. Chemosphere, 1997, 35(3): 643–654.

    Article  ADS  Google Scholar 

  62. Chin J.S., Lefebvre A.H., Experimental study on hydrocarbon fuel thermal stability. Journal of Thermal Science, 1992, 1(1): 70–74.

    Article  ADS  Google Scholar 

  63. Qin X.M., Chi H., Fang W.J., Guo Y.S., Xu L., Thermal stability characterization of n-alkanes from determination of produced aromatics. Journal of Analytical and Applied Pyrolysis, 2013, 104: 593–602.

    Article  Google Scholar 

  64. Ito M., Dang C.B., Hihara E., Thermal decomposition of lower-GWP refrigerants. International Refrigeration and Air Conditioning Conference, West Lafayette, US, 2014.

    Google Scholar 

  65. Heidsieck S.U.H., Dörrich S., Weidner R., Rieger B., Branched siloxanes as possible new heat transfer fluids for application in parabolic through solar thermal power plants. Solar Energy Materials and Solar Cells, 2017, 161: 278–284.

    Article  Google Scholar 

  66. Angelino G., Invernizzi C., Cyclic methylsiloxanes as working fluids for space power cycles. Journal of Solar Energy Engineering-transactions of The ASME, 1993, 115(3): 130–137.

    Article  Google Scholar 

  67. Fernández F.J., Prieto M.M., Suárez I., Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids. Energy, 2011, 36(8): 5239–5249.

    Article  Google Scholar 

  68. Hung T.C., Shai T.Y., Wang S.K., A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy, 1997, 22(7): 661–667.

    Article  Google Scholar 

  69. Lai N.A., Wendland M., Fischer J., Working fluids for high-temperature organic Rankine cycles. Energy, 2007, 36(1): 199–211.

    Article  Google Scholar 

  70. Dai X.Y., Shi L., An Q.S., Qian W.Z., Screening of working fluids and metal materials for high temperature organic Rankine cycles by compatibility. Journal of Renewable and Sustainable Energy, 2017, 9(2): 024702.

    Article  Google Scholar 

  71. Dai X.Y., Shi L., An Q.S., Qian W.Z., Influence of alkane working fluid decomposition on supercritical organic Rankine cycle systems. Energy, 2018, 153: 422–430.

    Article  Google Scholar 

  72. Rajabloo T., Bonalumi D., Iora P., Effect of a partial thermal decomposition of the working fluid on the performances of ORC power plants. Energy, 2017, 133: 1013–1026.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (51806117, 51236004), China Postdoctoral Science Foundation funded project (2018M630155), the Science Fund for Creative Research Group (No. 51621062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Shi, L. & Qian, W. Review of the Working Fluid Thermal Stability for Organic Rankine Cycles. J. Therm. Sci. 28, 597–607 (2019). https://doi.org/10.1007/s11630-019-1119-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-019-1119-3

Keywords

Navigation