Skip to main content
Log in

Thermoelastic Dissipation in Vibrations of Couple Stress-Based Circular Cross-sectional Beams with Nonlocal Single-Phase-Lag Heat Conduction

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

Given the need for utilizing size-dependent elasticity theories and non-Fourier heat transfer models in extremely small dimensions, the present research intends to provide a novel theoretical framework for thermoelastic dissipation (TED) in circular cross-sectional micro/nanobeams on the basis of the modified couple stress theory (MCST) and nonlocal single-phase-lag (NSPL) heat conduction model.

Methods

In the first step, the coupled heat equation of Euler–Bernoulli beams in polar coordinate system is derived by capturing the nonlocal and phase-lagging effects. By solving this equation, the function of temperature change is attained. Substitution of the couple stress-based constitutive relations and obtained temperature field in the definition of TED from the point of view of energy yields a TED relation in the form of infinite series encompassing mechanical length scale, thermal nonlocal and phase lag parameters.

Results

Numerical results are provided in three sections. In the first section, the correctness of the extracted formulation is explored via conducting a comparative study. In the second section, a convergence analysis is performed to ascertain the sufficient number of terms of the obtained infinite series for achieving well-founded outcomes. In the final section, a parametric analysis is made to illuminate the dependence of TED on some factors like mechanical length scale parameter, thermal nonlocal parameter, beam geometry, ambient temperature and beam material.

Conclusion

According to the obtained results, utilization of MCST lowers the amount of TED. Moreover, the incorporation of thermal nonlocal parameter in the governing equations can have substantial impacts on both the amount and the trend of TED, especially at high vibration frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings can be accessed by directly contacting the corresponding author.

References

  1. Gao JY, Liu J, Yang HM, Liu HS, Zeng G, Huang B (2023) Anisotropic medium sensing controlled by bound states in the continuum in polarization independent metasurfaces. Optics Express 31(26):44703–44719

    Article  Google Scholar 

  2. Wang YY, Lou M, Wang Y, Wu WG, Yang F (2022) Stochastic failure analysis of reinforced thermoplastic pipes under axial loading and internal pressure. China Ocean Engineering 36(4):614-628

    Article  Google Scholar 

  3. Ding H, Chen LQ (2023) Shock isolation of an orthogonal six-DOFs platform with high-static-low-dynamic stiffness. J Appl Mech 90(11):111004–111001

    Article  Google Scholar 

  4. Sun L, Liang T, Zhang C, Chen J (2023) The rheological performance of shearthickening fluids based on carbon fiber and silica nanocomposite. Physics of Fluids 35(3)

  5. Lu Z, Yang T, Brennan MJ, Liu Z, Chen LQ (2017) Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness. Journal of Applied Mechanics 84(2):021001

    Article  Google Scholar 

  6. Wu S, Lin Q, Yuen Y, Tai YC (2001) MEMS flow sensors for nano-fluidic applications. Sens Actuators A 89(1–2):152–158

    Article  Google Scholar 

  7. Ejeian F, Azadi S, Razmjou A, Orooji Y, Kottapalli A, Warkiani ME, Asadnia M (2019) Design and applications of MEMS flow sensors: a review. Sens Actuators A 295:483–502

    Article  Google Scholar 

  8. Johnson BR, Cabuz E, French HB, Supino R (2010) Development of a MEMS gyroscope for northfinding applications. In: IEEE/ION position, location and navigation symposium, IEEE, pp 168–170

  9. Koenig S, Rombach S, Gutmann W, Jaeckle A, Weber C, Ruf M, et al. (2019) Towards a navigation grade Si-MEMS gyroscope. In: 2019 DGON inertial sensors and systems (ISS), IEEE, pp 1–18

  10. Senkal D, Shkel AM (2020) Whole-angle MEMS gyroscopes: challenges and opportunities. Wiley, Hoboken

    Book  Google Scholar 

  11. Song P, Ma Z, Ma J, Yang L, Wei J, Zhao Y et al (2020) Recent progress of miniature MEMS pressure sensors. Micromachines 11(1):56

    Article  Google Scholar 

  12. Zhang Y, Howver R, Gogoi B, Yazdi N (2011) A high-sensitive ultra-thin MEMS capacitive pressure sensor. In: 2011 16th International solid-state sensors, actuators and microsystems conference. IEEE, pp 112–115

  13. Xu R, Zhou S, Li WJ (2011) MEMS accelerometer based nonspecific-user hand gesture recognition. IEEE Sens J 12(5):1166–1173

    Article  Google Scholar 

  14. Malayappan B, Lakshmi UP, Rao BP, Ramaswamy K, Pattnaik PK (2022) Sensing techniques and interrogation methods in optical mems accelerometers: a review. IEEE Sens J 22(7):6232–6246

    Article  Google Scholar 

  15. Razzaghi MJP, Asadollahzadeh M, Tajbakhsh MR, Mohammadzadeh R, Abad MZM, Nadimi E (2023) Investigation of a temperature-sensitive ferrofluid to predict heat transfer and irreversibilities in LS-3 solar collector under line dipole magnetic field and a rotary twisted tape. Int J Therm Sci 185:108104

    Article  Google Scholar 

  16. Mehdizadeh G, Nikoo MR, Talebbeydokhti N, Vanda S, Nematollahi B (2023) Hypolimnetic aeration optimization based on reservoir thermal stratification simulation. J Hydrol 625:130106

    Article  Google Scholar 

  17. Ashraf MW, Tayyaba S, Afzulpurkar N (2011) Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int J Mol Sci 12(6):3648–3704

    Article  Google Scholar 

  18. Toupin RA (1964) Theories of elasticity with couple-stress. Arch Ration Mech Anal 17(2):85–112

    Article  MathSciNet  Google Scholar 

  19. Yang FACM, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  Google Scholar 

  20. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438

    Article  Google Scholar 

  21. Lam DC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  Google Scholar 

  22. Eringen AC, Edelen D (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    Article  MathSciNet  Google Scholar 

  23. Lim CW, Zhang G, Reddy J (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    Article  MathSciNet  Google Scholar 

  24. Sladek J, Sladek V, Hosseini SM (2021) Analysis of a curved Timoshenko nano-beam with flexoelectricity. Acta Mech 232:1563–1581

    Article  MathSciNet  Google Scholar 

  25. Jin H, Sui S, Zhu C, Li C (2023) Axial free vibration of rotating FG piezoelectric nano-rods accounting for nonlocal and strain gradient effects. J Vib Eng Technol 11(2):537–549

    Article  Google Scholar 

  26. Sarparast H, Alibeigloo A, Borjalilou V, Koochakianfard O (2022) Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects. Arch Civ Mech Eng 22(4):172

    Article  Google Scholar 

  27. Hosseini SM, Sladek J, Sladek V, Zhang C (2024) Effects of the strain gradients on the band structures of the elastic waves propagating in 1D phononic crystals: an analytical approach. Thin-Walled Struct 194:111316

    Article  Google Scholar 

  28. Yapanmış BE (2023) Nonlinear vibration and internal resonance analysis of microbeam with mass using the modified coupled stress theory. J Vib Eng Technol 11(5):2167–2180

    Article  Google Scholar 

  29. Zheng F, Lu Y, Ebrahimi-Mamaghani A (2022) Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid. Waves Random Complex Media 32(3):1385–1423

    Article  MathSciNet  Google Scholar 

  30. Sladek V, Sladek J, Repka M, Sator L (2020) FGM micro/nano-plates within modified couple stress elasticity. Compos Struct 245:112294

    Article  Google Scholar 

  31. Panahi R, Asghari M, Borjalilou V (2023) Nonlinear forced vibration analysis of micro-rotating shaft–disk systems through a formulation based on the nonlocal strain gradient theory. Arch Civ Mech Eng 23(2):85

    Article  Google Scholar 

  32. Qiu M, Lei D, Ou Z (2022) Nonlinear vibration analysis of fractional viscoelastic nanobeam. J Vib Eng Technol 11:4015–4038

    Article  Google Scholar 

  33. Borjalilou V, Taati E, Ahmadian MT (2019) Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: exact solutions. SN Appl Sci 1:1–15

    Article  Google Scholar 

  34. Sladek J, Sladek V, Wünsche M, Tan CL (2017) Crack analysis of size-dependent piezoelectric solids under a thermal load. Eng Fract Mech 182:187–201

    Article  Google Scholar 

  35. Li J, Wang Z, Zhang S, Lin Y, Wang L, Sun C, Tan J (2023) A novelty mandrel supported thin-wall tube bending cross-section quality analysis: a diameter-adjustable multi-point contact mandrel. The International Journal of Advanced Manufacturing Technology 124(11):4615-4637

    Google Scholar 

  36. Wang Z, Zhou T, Zhang S, Sun C, Li J, Tan J (2023) Bo-LSTM based crosssectional profile sequence progressive prediction method for metal tube rotate draw bending. Advanced Engineering Informatics 58:102152

    Article  Google Scholar 

  37. Shi X, Yang Y, Zhu X, Huang Z (2024) Stochastic dynamics analysis of the rocket shell coupling system with circular plate fasteners based on spectro-geometric method. Composite Structures 329:117727

    Article  Google Scholar 

  38. Li M, Wang T, Chu F, Han Q, Qin Z, Zuo MJ (2020) Scaling-basis chirplet transform. IEEE Transactions on Industrial Electronics 68(9):8777-8788

    Article  Google Scholar 

  39. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309

    Article  Google Scholar 

  40. Green AE, Naghdi P (1993) Thermoelasticity without energy dissipation. J Elast 31(3):189–208

    Article  MathSciNet  Google Scholar 

  41. Green AE, Lindsay K (1972) Thermoelasticity. J Elast 2(1):1–7

    Article  Google Scholar 

  42. Quintanilla R (2019) Moore–Gibson–Thompson thermoelasticity. Math Mech Solids 24(12):4020–4031

    Article  MathSciNet  Google Scholar 

  43. Tzou DY (1995) The generalized lagging response in small-scale and high-rate heating. Int J Heat Mass Transf 38(17):3231–3240

    Article  Google Scholar 

  44. Tzou DY, Guo ZY (2010) Nonlocal behavior in thermal lagging. Int J Therm Sci 49(7):1133–1137

    Article  Google Scholar 

  45. Sladek J, Sladek V, Repka M, Pan E (2020) A novel gradient theory for thermoelectric material structures. Int J Solids Struct 206:292–303

    Article  Google Scholar 

  46. Kazemi M, Rad MHG, Hosseini SM (2023) Geometrically non-linear vibration and coupled thermo-elasticity analysis with energy dissipation in fg multilayer cylinder reinforced by graphene platelets using MLPG method. J Vib Eng Technol 11(1):355–379

    Article  Google Scholar 

  47. Liu D, Geng T, Wang H, Esmaeili S (2023) Analytical solution for thermoelastic oscillations of nonlocal strain gradient nanobeams with dual-phase-lag heat conduction. Mech Based Des Struct Mach 51(9):4946–4976

    Article  Google Scholar 

  48. Abouelregal AE, Moaaz O, Khalil KM, Abouhawwash M, Nasr ME (2023) A phase delay thermoelastic model with higher derivatives and two temperatures for the hall current effect on a micropolar rotating material. J Vib Eng Technol 12:1505–1523

    Article  Google Scholar 

  49. Yue X, Yue X, Borjalilou V (2021) Generalized thermoelasticity model of nonlocal strain gradient Timoshenko nanobeams. Arch Civ Mech Eng 21(3):124

    Article  Google Scholar 

  50. Hosseini SM, Sladek J, Sladek V (2020) Nonlocal coupled photo-thermoelasticity analysis in a semiconducting micro/nano beam resonator subjected to plasma shock loading: a Green-Naghdi-based analytical solution. Appl Math Model 88:631–651

    Article  MathSciNet  Google Scholar 

  51. Kadian P, Kumar S, Sangwan M (2023) Effect of inclined mechanical load on a rotating microelongated two temperature thermoelastic half space with temperature dependent properties. J Vib Eng Technol. https://doi.org/10.1007/s42417-023-01105-1

    Article  Google Scholar 

  52. Yu JN, She C, Xu YP, Esmaeili S (2022) On size-dependent generalized thermoelasticity of nanobeams. Waves Random Complex Media. https://doi.org/10.1080/17455030.2021.2019351

    Article  Google Scholar 

  53. Ali BM, Batoo KM, Hussain S, Hussain W, Khazaal WM, Mohammed BA et al (2023) Scale-dependent generalized thermoelastic damping in vibrations of small-sized rectangular plate resonators by considering three-dimensional heat conduction. Int J Struct Stab Dyn. https://doi.org/10.1142/S0219455424502225

    Article  Google Scholar 

  54. Sharma DK, Bachher M, Sharma MK, Sarkar N (2021) On the analysis of free vibrations of nonlocal elastic sphere of FGM type in generalized thermoelasticity. Journal of Vibration Engineering & Technologies 9:149–160

    Article  Google Scholar 

  55. Singh B, Mukhopadhyay S (2023) Thermoelastic vibration of Timoshenko beam under the modified couple stress theory and the Moore–Gibson–Thompson heat conduction model. Math Mech Solids. https://doi.org/10.1177/10812865231186127

    Article  Google Scholar 

  56. Abouelregal AE, Akgöz B, Civalek Ö (2022) Nonlocal thermoelastic vibration of a solid medium subjected to a pulsed heat flux via Caputo-Fabrizio fractional derivative heat conduction. Appl Phys A 128(8):660

    Article  Google Scholar 

  57. Gu B, He T (2021) Investigation of thermoelastic wave propagation in Euler-Bernoulli beam via nonlocal strain gradient elasticity and GN theory. J Vib Eng Technol 9:715–724

    Article  Google Scholar 

  58. Kharnoob MM, Cepeda LC, Jácome E, Choto S, Abdulally Abdulhussien Alazbjee A, Sapaev IB et al (2023) Analysis of thermoelastic damping in a microbeam following a modified strain gradient theory and the Moore–Gibson–Thompson heat equation. Mech Time-Depend Mater. https://doi.org/10.1007/s11043-023-09632-w

    Article  Google Scholar 

  59. Weng W, Lu Y, Borjalilou V (2021) Size-dependent thermoelastic vibrations of Timoshenko nanobeams by taking into account dual-phase-lagging effect. Eur Phys Jo Plus 136:1–26

    Google Scholar 

  60. Pathania V, Dhiman P (2023) Generalized poro-thermoelastic waves in the cylindrical plate framed with liquid layers. J Vib Eng Technol 12:953–969

    Article  Google Scholar 

  61. Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52(3):230

    Article  Google Scholar 

  62. Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B 61(8):5600

    Article  Google Scholar 

  63. Guo FL, Wang GQ, Rogerson G (2012) Analysis of thermoelastic damping in micro-and nanomechanical resonators based on dual-phase-lagging generalized thermoelasticity theory. Int J Eng Sci 60:59–65

    Article  MathSciNet  Google Scholar 

  64. Zhou H, Li P, Fang Y (2018) Thermoelastic damping in circular cross-section micro/nanobeam resonators with single-phase-lag time. Int J Mech Sci 142:583–594

    Article  Google Scholar 

  65. Zhou H, Li P, Zuo W, Fang Y (2020) Dual-phase-lag thermoelastic damping models for micro/nanobeam resonators. Appl Math Model 79:31–51

    Article  MathSciNet  Google Scholar 

  66. Zuo W, Li P, Du J, Tse ZTH (2022) Thermoelastic damping in anisotropic piezoelectric microbeam resonators. Int J Heat Mass Transf 199:123493

    Article  Google Scholar 

  67. Kim JH, Kim JH (2023) Dual-phase-lagging thermoelastic dissipation for toroidal micro/nano-ring resonator model. Therm Sci Eng Progr 39:101683

    Article  Google Scholar 

  68. Zheng L, Wu Z, Wen S, Li F (2023) Thermoelastic damping in cylindrical shells with arbitrary boundaries. Int J Heat Mass Transf 206:123948

    Article  Google Scholar 

  69. Kumar H, Mukhopadhyay S (2023) Size-dependent thermoelastic damping analysis in nanobeam resonators based on Eringen’s nonlocal elasticity and modified couple stress theories. J Vib Control 29(7–8):1510–1523

    Article  MathSciNet  Google Scholar 

  70. Shi S, He T, Jin F (2021) Thermoelastic damping analysis of size-dependent nano-resonators considering dual-phase-lag heat conduction model and surface effect. Int J Heat Mass Transf 170:120977

    Article  Google Scholar 

  71. Borjalilou V, Asghari M (2018) Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model. Acta Mech 229:3869–3884

    Article  MathSciNet  Google Scholar 

  72. Yang L, Li P, Gao Q, Gao T (2022) Thermoelastic damping in rectangular micro/nanoplate resonators by considering three-dimensional heat conduction and modified couple stress theory. J Therm Stress 45(11):843–864

    Article  Google Scholar 

  73. Ge Y, Sarkar A (2023) Thermoelastic damping in vibrations of small-scaled rings with rectangular cross-section by considering size effect on both structural and thermal domains. Int J Struct Stab Dyn 23(03):2350026

    Article  MathSciNet  Google Scholar 

  74. Kakhki EK, Hosseini SM, Tahani M (2016) An analytical solution for thermoelastic damping in a micro-beam based on generalized theory of thermoelasticity and modified couple stress theory. Appl Math Model 40(4):3164–3174

    Article  MathSciNet  Google Scholar 

  75. Jalil AT, Karim N, Ruhaima AAK, Sulaiman JMA, Hameed AS, Abed AS et al (2023) Analytical model for thermoelastic damping in in-plane vibrations of circular cross-sectional micro/nanorings with dual-phase-lag heat conduction. J Vib Eng Technol 11:1391

    Article  Google Scholar 

  76. Weng L, Xu F, Chen X (2024) Three-dimensional analysis of thermoelastic damping in couple stress-based rectangular plates with nonlocal dual-phase-lag heat conduction. Eur J Mech A/Solids 105:105223

    Article  MathSciNet  Google Scholar 

  77. Borjalilou V, Asghari M, Bagheri E (2019) Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J Therm Stress 42(7):801–814

    Article  Google Scholar 

  78. Li F, Esmaeili S (2021) On thermoelastic damping in axisymmetric vibrations of circular nanoplates: incorporation of size effect into structural and thermal areas. Eur Phys J Plus 136(2):1–17

    Article  Google Scholar 

  79. Chugh N, Partap G (2021) Study of thermoelastic damping in microstretch thermoelastic thin circular plate. J Vib Eng Technol 9:105–114

    Article  Google Scholar 

  80. Al-Hawary SIS, Huamán-Romaní YL, Sharma MK, Kuaquira-Huallpa F, Pant R, Romero-Parra RM et al (2024) Non-Fourier thermoelastic damping in small-sized ring resonators with circular cross section according to Moore–Gibson–Thompson generalized thermoelasticity theory. Arch Appl Mech 94:469–491

    Article  Google Scholar 

  81. Kim JH, Kim JH (2019) Phase-lagging of the thermoelastic dissipation for a tubular shell model. Int J Mech Sci 163:105094

    Article  Google Scholar 

  82. Yani A, Abdullaev S, Alhassan MS, Sivaraman R, Jalil AT (2023) A non-Fourier and couple stress-based model for thermoelastic dissipation in circular microplates according to complex frequency approach. Int J Mech Mater Des 19:645–668

    Article  Google Scholar 

  83. Li M, Cai Y, Fan R, Wang H, Borjalilou V (2022) Generalized thermoelasticity model for thermoelastic damping in asymmetric vibrations of nonlocal tubular shells. Thin-Walled Struct 174:109142

    Article  Google Scholar 

  84. Odira I, Byiringiro J, Keraita J (2023) Probing multimode thermoelastic damping in MEMS beam mass structure. J Vib Eng Technol. https://doi.org/10.1007/s42417-023-01137-7

    Article  Google Scholar 

  85. Hai L, Kim DJ (2023) Nonlocal dual-phase-lag thermoelastic damping in small-sized circular cross-sectional ring resonators. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2023.2245822

    Article  Google Scholar 

  86. Al-Bahrani M, AbdulAmeer SA, Yasin Y, Alanssari AI, Hameed AS, Sulaiman JMA et al (2023) Couple stress-based thermoelastic damping in microrings with rectangular cross section according to Moore–Gibson–Thompson heat equation. Arch Civ Mech Eng 23(3):151

    Article  Google Scholar 

  87. Jalil AT, Saleh ZM, Imran AF, Yasin Y, Ruhaima AAK, Gatea MA, Esmaeili S (2023) A size-dependent generalized thermoelasticity theory for thermoelastic damping in vibrations of nanobeam resonators. Int J Struct Stab Dyn 23:2350133

    Article  MathSciNet  Google Scholar 

  88. Zhao G, Shi S, Gu B, He T (2021) Thermoelastic damping analysis to nano-resonators utilizing the modified couple stress theory and the memory-dependent heat conduction model. J Vib Eng Technol 10:715–726

    Article  Google Scholar 

  89. Borjalilou V, Asghari M, Taati E (2020) Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect. J Vib Control 26(11–12):1042–1053

    Article  MathSciNet  Google Scholar 

  90. Zhou H, Li P, Fang Y (2019) Single-phase-lag thermoelastic damping models for rectangular cross-sectional micro-and nano-ring resonators. Int J Mech Sci 163:105132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherzod Shukhratovich Abdullaev.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breesam, Y.F., Abdullaev, S.S., Althomali, R.H. et al. Thermoelastic Dissipation in Vibrations of Couple Stress-Based Circular Cross-sectional Beams with Nonlocal Single-Phase-Lag Heat Conduction. J. Vib. Eng. Technol. (2024). https://doi.org/10.1007/s42417-024-01372-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42417-024-01372-6

Keywords

Navigation