Skip to main content
Log in

Non-Fourier thermoelastic damping in small-sized ring resonators with circular cross section according to Moore–Gibson–Thompson generalized thermoelasticity theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

It has been corroborated that thermoelastic damping (TED) is one of incontrovertible sources of energy dissipation and limiting the quality factor (Q-factor) in micro/nanostructures. On the other hand, it has been clarified that the fitting description of heat transfer process in structures with such small dimensions should be carried out through non-Fourier models of heat conduction. This article strives for providing a size-dependent analytical framework for estimating the value of TED in circular cross-sectional micro/nanorings with the help of Moore–Gibson–Thompson (MGT) generalized thermoelasticity theory. To reach this objective, after deriving the equation of heat conduction according to MGT model, the fluctuation temperature in the ring is obtained. Then, by applying the existing definition of TED in the purview of entropy generation (EG) method, an analytical relationship in the form of infinite series is rendered to evaluate the amount of TED. In the results section, first, the precision of the developed formulation is examined by way of a validation study. Graphical data are then presented to illuminate how many terms of the extracted infinite series yield convergent results. The final stage is to conduct an all-embracing parametric analysis to make clear the role of various crucial factors in the alterations of TED. According to the obtained results, the impact of MGT model on TED sorely relies on the vibrational mode number of the ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data and material in this article are available by contacting the corresponding author directly.

References

  1. Babatain, W., Bhattacharjee, S., Hussain, A.M., Hussain, M.M.: Acceleration sensors: sensing mechanisms, emerging fabrication strategies, materials, and applications. ACS Appl. Electron. Mater. 3(2), 504–531 (2021)

    Article  CAS  Google Scholar 

  2. Feng, J., Safaei, B., Qin, Z., Chu, F.: Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene. Compos. Sci. Technol. 233, 109925 (2023)

    Article  CAS  Google Scholar 

  3. Chang, H., Xue, L., Qin, W., Yuan, G., Yuan, W.: An integrated MEMS gyroscope array with higher accuracy output. Sensors 8(4), 2886–2899 (2008)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, Y., Howver, R., Gogoi, B., Yazdi, N.: A high-sensitive ultra-thin MEMS capacitive pressure sensor. In: 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, pp. 112–115. IEEE (2011)

  5. Dennis, J.O., Ahmed, A.Y., Khir, M.H.: Fabrication and characterization of a CMOS-MEMS humidity sensor. Sensors 15(7), 16674–16687 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alshenawy, R., Sahmani, S., Safaei, B., Elmoghazy, Y., Al-Alwan, A., Al Nuwairan, M.: Surface stress effect on nonlinear dynamical performance of nanobeam-type piezoelectric energy harvesters via meshless collocation technique. Eng. Anal. Bound. Elem. 152, 104–119 (2023)

    Article  MathSciNet  Google Scholar 

  7. Tabak, A., Safaei, B., Memarzadeh, A., Arman, S., Kizilors, C.: An extensive review of piezoelectric energy-harvesting structures utilizing auxetic materials. J. Vib. Eng. Technol. 7, 1–38 (2023)

    Google Scholar 

  8. Safaei, B., Erdem, S., Karimzadeh Kolamroudi, M., Arman, S.: State-of-the-art review of energy harvesting applications by using thermoelectric generators. Mech. Adv. Mater. Struct. 25, 1–33 (2023)

    Article  Google Scholar 

  9. Ejeian, F., Azadi, S., Razmjou, A., Orooji, Y., Kottapalli, A., Warkiani, M.E., Asadnia, M.: Design and applications of MEMS flow sensors: a review. Sens. Actuat. A 295, 483–502 (2019)

    Article  CAS  Google Scholar 

  10. Jin, H.Y., Wang, Z.A.: Boundedness, blowup and critical mass phenomenon in competing chemotaxis. J. Differ. Equ. 260(1), 162–196 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Leichle, T., Nicu, L., Alava, T.: MEMS biosensors and COVID-19: missed opportunity. ACS Sens. 5(11), 3297–3305 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. Imboden, M., Mohanty, P.: Dissipation in nanoelectromechanical systems. Phys. Rep. 534(3), 89–146 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Liu, H., Sahmani, S., Safaei, B.: Nonlinear buckling mode transition analysis in nonlocal couple stress-based stability of FG piezoelectric nanoshells under thermo-electromechanical load. Mech. Adv. Mater. Struct. 8, 1–21 (2022)

    Google Scholar 

  14. Alshenawy, R., Sahmani, S., Safaei, B., Elmoghazy, Y., Al-Alwan, A., Al Nuwairan, M.: Three-dimensional nonlinear stability analysis of axial-thermal-electrical loaded FG piezoelectric microshells via MKM strain gradient formulations. Appl. Math. Comput. 439, 127623 (2023)

    Article  MathSciNet  Google Scholar 

  15. İnada, A.A., Arman, S., Safaei, B.: A novel review on the efficiency of nanomaterials for solar energy storage systems. J. Energy Storage 55, 105661 (2022)

    Article  Google Scholar 

  16. Hao, R.B., Lu, Z.Q., Ding, H., Chen, L.Q.: Orthogonal six-DOFs vibration isolation with tunable high-static-low-dynamic stiffness: experiment and analysis. Int. J. Mech. Sci. 222, 107237 (2022)

    Article  Google Scholar 

  17. Duwel, A., Gorman, J., Weinstein, M., Borenstein, J., Ward, P.: Experimental study of thermoelastic damping in MEMS gyros. Sens. Actuat. A 103(1–2), 70–75 (2003)

    Article  CAS  Google Scholar 

  18. Sun, T., Peng, L., Ji, X., Li, X.: A half-cycle negative-stiffness damping model and device development. Struct. Control. Health Monit. 2023, 24 (2023)

    Article  Google Scholar 

  19. Duwel, A., Candler, R.N., Kenny, T.W., Varghese, M.: Engineering MEMS resonators with low thermoelastic damping. J. Microelectromech. Syst. 15(6), 1437–1445 (2006)

    Article  Google Scholar 

  20. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  ADS  Google Scholar 

  21. Green, A.E., Naghdi, P.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  22. Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 24(12), 4020–4031 (2019)

    Article  MathSciNet  Google Scholar 

  23. Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148(2), 766 (1966)

    Article  ADS  CAS  Google Scholar 

  24. Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995)

    Article  CAS  Google Scholar 

  25. Zener, C.: Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52(3), 230 (1937)

    Article  ADS  Google Scholar 

  26. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61(8), 5600 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Guo, F.L., Wang, G.Q., Rogerson, G.: Analysis of thermoelastic damping in micro-and nanomechanical resonators based on dual-phase-lagging generalized thermoelasticity theory. Int. J. Eng. Sci. 60, 59–65 (2012)

    Article  MathSciNet  Google Scholar 

  28. Emami, A.A., Alibeigloo, A.: Exact solution for thermal damping of functionally graded Timoshenko microbeams. J. Therm. Stress. 39(2), 231–243 (2016)

    Article  Google Scholar 

  29. Gu, B., He, T., Ma, Y.: Thermoelastic damping analysis in micro-beam resonators considering nonlocal strain gradient based on dual-phase-lag model. Int. J. Heat Mass Transf. 180, 121771 (2021)

    Article  Google Scholar 

  30. Wang, Y.W., Zhang, X.Y., Li, X.F.: Thermoelastic damping in a micro-beam based on the memory-dependent generalized thermoelasticity. Waves Random Complex Med. 32(6), 2812–2829 (2022)

    Article  ADS  Google Scholar 

  31. Li, P., Fang, Y., Hu, R.: Thermoelastic damping in rectangular and circular microplate resonators. J. Sound Vib. 331(3), 721–733 (2012)

    Article  ADS  Google Scholar 

  32. Zhou, H., Shao, D., Song, X., Li, P.: Three-dimensional thermoelastic damping models for rectangular micro/nanoplate resonators with nonlocal-single-phase-lagging effect of heat conduction. Int. J. Heat Mass Transf. 196, 123271 (2022)

    Article  CAS  Google Scholar 

  33. Fang, Y., Li, P.: Thermoelastic damping in thin microrings with two-dimensional heat conduction. Physica E 69, 198–206 (2015)

    Article  ADS  CAS  Google Scholar 

  34. Li, P., Fang, Y., Zhang, J.: Thermoelastic damping in microrings with circular cross-section. J. Sound Vib. 361, 341–354 (2016)

    Article  ADS  Google Scholar 

  35. Zhou, H., Li, P., Fang, Y.: Single-phase-lag thermoelastic damping models for rectangular cross-sectional micro-and nano-ring resonators. Int. J. Mech. Sci. 163, 105132 (2019)

    Article  Google Scholar 

  36. Zhou, H., Li, P.: Dual-phase-lagging thermoelastic damping and frequency shift of micro/nano-ring resonators with rectangular cross-section. Thin-Walled Struct. 159, 107309 (2021)

    Article  Google Scholar 

  37. Kim, J.H., Kim, J.H.: Thermoelastic attenuation of circular-cross-sectional micro/nanoring including single-phase-lag time. Int. J. Mech. Mater. Des. 17, 915–929 (2021)

    Article  Google Scholar 

  38. Jalil, A.T., Abdul Ameer, S.A., Hassan, Y.M., Mohammed, I.M., Ali, M.J., Ward, Z.H., Ghasemi, S.: Analytical model for thermoelastic dissipation in oscillations of toroidal micro/nanorings in the context of Guyer–Krumhansl heat equation. Int. J. Struct. Stabil. Dyn. 20, 525 (2023)

    MathSciNet  Google Scholar 

  39. Jalil, A.T., Karim, N., Ruhaima, A.A.K., Sulaiman, J.M.A., Hameed, A.S., Abed, A.S., Riadi, Y.: Analytical model for thermoelastic damping in in-plane vibrations of circular cross-sectional micro/nanorings with dual-phase-lag heat conduction. J. Vib. Eng. Technol. 6, 1–14 (2023)

    Google Scholar 

  40. Zheng, L., Wu, Z., Wen, S., Li, F.: Thermoelastic damping in cylindrical shells with arbitrary boundaries. Int. J. Heat Mass Transf. 206, 123948 (2023)

    Article  Google Scholar 

  41. Borjalilou, V., Asghari, M., Bagheri, E.: Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J. Therm. Stress. 42(7), 801–814 (2019)

    Article  Google Scholar 

  42. Singh, B., Kumar, H., Mukhopadhyay, S.: Thermoelastic damping analysis in micro-beam resonators in the frame of modified couple stress and Moore–Gibson–Thompson (MGT) thermoelasticity theories. Waves Random Complex Med. 4, 1–18 (2021)

    Google Scholar 

  43. Ge, X., Li, P., Fang, Y., Yang, L.: Thermoelastic damping in rectangular microplate/nanoplate resonators based on modified nonlocal strain gradient theory and nonlocal heat conductive law. J. Therm. Stress. 44(6), 690–714 (2021)

    Article  Google Scholar 

  44. Wang, Y.W., Chen, J., Zheng, R.Y., Li, X.F.: Thermoelastic damping in circular microplate resonators based on fractional dual-phase-lag model and couple stress theory. Int. J. Heat Mass Transf. 201, 123570 (2023)

    Article  Google Scholar 

  45. Li, M., Cai, Y., Bao, L., Fan, R., Zhang, H., Wang, H., Borjalilou, V.: Analytical and parametric analysis of thermoelastic damping in circular cylindrical nanoshells by capturing small-scale effect on both structure and heat conduction. Arch. Civ. Mech. Eng. 22, 1–16 (2022)

    Article  Google Scholar 

  46. Ge, Y., Sarkar, A.: Thermoelastic damping in vibrations of small-scaled rings with rectangular cross-section by considering size effect on both structural and thermal domains. Int. J. Struct. Stabil. Dyn. 24, 2350026 (2022)

    MathSciNet  Google Scholar 

  47. Li, F., Esmaeili, S.: On thermoelastic damping in axisymmetric vibrations of circular nanoplates: incorporation of size effect into structural and thermal areas. Eur. Phys. J. Plus 136(2), 1–17 (2021)

    Article  CAS  Google Scholar 

  48. Li, S.R., Ma, H.K.: Analysis of free vibration of functionally graded material micro-plates with thermoelastic damping. Arch. Appl. Mech. 90(6), 1285–1304 (2020)

    Article  ADS  Google Scholar 

  49. Singh, B., Kumar, H., Mukhopadhyay, S.: Analysis of size effects on thermoelastic damping in the Kirchhoff’s plate resonator under Moore–Gibson–Thompson thermoelasticity. Thin-Walled Struct. 180, 109793 (2022)

    Article  Google Scholar 

  50. Borjalilou, V., Asghari, M., Taati, E.: Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect. J. Vib. Control 26(11–12), 1042–1053 (2020)

    Article  MathSciNet  Google Scholar 

  51. Zhao, G., He, T.: Investigation on thermoelastic damping of micro-plate resonators based on the modified couple stress theory incorporating the memory-dependent derivative heat transfer model. Arch. Appl. Mech. 25, 1–15 (2023)

    Google Scholar 

  52. Yani, A., Abdullaev, S., Alhassan, M.S., Sivaraman, R., Jalil, A.T.: A non-Fourier and couple stress-based model for thermoelastic dissipation in circular microplates according to complex frequency approach. Int. J. Mech. Mater. Des. 7, 1–24 (2023)

    Google Scholar 

  53. Xiao, C., Zhang, G., Hu, P., Yu, Y., Mo, Y., Borjalilou, V.: Size-dependent generalized thermoelasticity model for thermoelastic damping in circular nanoplates. Waves Random Complex Med. 8, 1–21 (2021)

    Google Scholar 

  54. Kaur, I., Lata, P., Singh, K.: Study of frequency shift and thermoelastic damping in transversely isotropic nano-beam with GN III theory and two temperature. Arch. Appl. Mech. 91, 1697–1711 (2021)

    Article  ADS  Google Scholar 

  55. Kumar, H., Mukhopadhyay, S.: Thermoelastic damping analysis in microbeam resonators based on Moore–Gibson–Thompson generalized thermoelasticity theory. Acta Mech. 231(7), 3003–3015 (2020)

    Article  MathSciNet  Google Scholar 

  56. Borjalilou, V., Asghari, M.: Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory. Int. J. Appl. Mech. 11(01), 1950007 (2019)

    Article  Google Scholar 

  57. Kaur, I., Singh, K.: Thermoelastic damping in a thin circular transversely isotropic Kirchhoff–Love plate due to GN theory of type III. Arch. Appl. Mech. 91(5), 2143–2157 (2021)

    Article  ADS  Google Scholar 

  58. Li, M., Cai, Y., Fan, R., Wang, H., Borjalilou, V.: Generalized thermoelasticity model for thermoelastic damping in asymmetric vibrations of nonlocal tubular shells. Thin-Walled Struct. 174, 109142 (2022)

    Article  Google Scholar 

  59. Zhou, H., Li, P.: Nonlocal dual-phase-lagging thermoelastic damping in rectangular and circular micro/nanoplate resonators. Appl. Math. Model. 95, 667–687 (2021)

    Article  MathSciNet  Google Scholar 

  60. Jalil, A.T., Saleh, Z.M., Imran, A.F., Yasin, Y., Ruhaima, A.A.K., Gatea, A., Esmaeili, S.: A size-dependent generalized thermoelasticity theory for thermoelastic damping in vibrations of nanobeam resonators. Int. J. Struct. Stabil. Dyn. 8, 25 (2022)

    Google Scholar 

  61. Borjalilou, V., Asghari, M.: Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model. Acta Mech. 229, 3869–3884 (2018)

    Article  MathSciNet  Google Scholar 

  62. Kim, J.H., Kim, J.H.: Mass imperfections in a toroidal micro-ring model with thermoelastic damping. Appl. Math. Model. 63, 405–414 (2018)

    Article  MathSciNet  Google Scholar 

  63. Zheng, L., Wu, Z., Wen, S., Li, F.: An analytical model for thermoelastic damping in laminated microring resonators. Appl. Math. Model. 116, 655–672 (2023)

    Article  MathSciNet  Google Scholar 

  64. Zhou, H., Shao, D., Li, P.: Thermoelastic damping and frequency shift in micro/nano-ring resonators considering the nonlocal single-phase-lag effect in the thermal field. Appl. Math. Model. 115, 237–258 (2023)

    Article  MathSciNet  Google Scholar 

  65. Li, S.R., Zhang, F., Batra, R.C.: Thermoelastic damping in high frequency resonators using higher-order shear deformation theories. Thin-Walled Struct. 188, 110778 (2023)

    Article  Google Scholar 

  66. Zhang, Z., Li, S.: Thermoelastic damping of functionally graded material micro-beam resonators based on the modified couple stress theory. Acta Mech. Solida Sin. 33(4), 496–507 (2020)

    Article  Google Scholar 

  67. Kumar, R.: Analysis of the quality factor of micromechanical resonators using memory-dependent derivative under different models. Arch. Appl. Mech. 91(6), 2735–2745 (2021)

    Article  ADS  Google Scholar 

  68. Rao, S.S.: Vibration of Continuous Systems. Wiley (2019)

    Book  Google Scholar 

  69. Kong, L., Liu, G.: Synchrotron-based infrared microspectroscopy under high pressure: An introduction. Matter Radiat. Extremes 6(6), 65 (2021)

    Article  Google Scholar 

  70. Xu, J., Liu, J., Zhang, Z., Wu, X.: Spatial–temporal transformation for primary and secondary instabilities in weakly non-parallel shear flows. J. Fluid Mech. 959, A21 (2023)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  71. Tian, L.M., Jin, B.B., Li, L.: Axial Compressive Mechanical Behaviors of a Double-Layer Member. J. Struct. Eng. 149(8), 04023110 (2023)

    Article  Google Scholar 

  72. Zhang, C.: The active rotary inertia driver system for flutter vibration control of bridges and various promising applications. Sci. China Technol. Sci. 66(2), 390–405 (2023)

    Article  ADS  Google Scholar 

  73. Wu, Z., Huang, B., Fan, J., Chen, H.: Homotopy based stochastic finite element model updating with correlated static measurement data. Measurement 210, 112512 (2023)

  74. Luo, C., Wang, L., Xie, Y., & Chen, B.: A new conjugate gradient method for moving force identification of vehicle–bridge system. J. Vib. Eng. Technol. 1–18 (2022). https://doi.org/10.1007/s42417-022-00824-1

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

SISA contributed to project administration and software; YLHR contributed to conceptualization and methodology; MKS perform investigation and software; FKH done formal analysis and writing; RP: contributed to writing and visualization; RMRP contributed to supervision, visualization, and validation; DT contributed to writing and visualization; MAG done investigation and software; SAZ helped in writing and data curation.

Corresponding author

Correspondence to Rosario Mireya Romero-Parra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hawary, S.I.S., Huamán-Romaní, YL., Sharma, M.K. et al. Non-Fourier thermoelastic damping in small-sized ring resonators with circular cross section according to Moore–Gibson–Thompson generalized thermoelasticity theory. Arch Appl Mech 94, 469–491 (2024). https://doi.org/10.1007/s00419-023-02529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02529-7

Keywords

Navigation