Skip to main content
Log in

Axial Free Vibration of Rotating FG Piezoelectric Nano-rods Accounting for Nonlocal and Strain Gradient Effects

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

To reveal the dynamic behaviors and electromechanical coupling characteristics of rotating nonuniform nanocomponents in nanoelectromechanical system, we investigate the axial-free vibration of a rotating functionally graded (FG) piezoelectric nano-rod with continuous variations in material physical properties along the thickness direction.

Methods

Based on the nonlocal strain gradient theory, the governing equations of motion and boundary conditions of freely vibrating FG piezoelectric nano-rods with rotation are derived via Hamilton principle, where the material inhomogeneity of rod nanostructures, and the nonlocal and strain gradient effects at a nanoscale are considered. The partial differential equations are discretized into a set of algebraic equations by the differential quadrature method (DQM), and then natural frequencies of axial vibration are determined by solving eigenvalue equations.

Results and Conclusion

Some numerical examples are carried out according to the size and parameters of existing myosin molecular motors. Effects of the material gradient index, nonlocal parameter, strain gradient characteristic parameter, rotational speed and external electrostatic voltage on the vibration behaviors are demonstrated and analyzed. A mutual restriction between the nonlocal parameter and strain gradient characteristic parameter is implied. The positive voltage and negative voltage are equivalent to axial tension and axial compression, respectively. The present research and corresponding numerical results are expected to be used as reference for the design and optimization of emerging micro/nano-rotating machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lai SK, Lim CW, Lin Z et al (2011) Analytical analysis for large-amplitude oscillation of a rotational pendulum system. Appl Math Comput 217(13):6115–6124

    MathSciNet  MATH  Google Scholar 

  2. Yang XD, Li Z, Zhang W et al (2019) On the gyroscopic and centrifugal effects in the free vibration of rotating beams. J Vib Control 25(1):219–227

    Article  MathSciNet  Google Scholar 

  3. Liu ZW, Wu K, Ma ZS et al (2020) Vibration analysis of a rotating flywheel/flexible coupling system with angular misalignment and rubbing using smoothed pseudo Wigner–Ville distributions. J Vib Eng Technol 8(5):761–772

    Article  Google Scholar 

  4. Lobato THG, da Silva RR, da Costa ES et al (2020) An integrated approach to rotating machinery fault diagnosis using, EEMD, SVM, and augmented data. J Vib Eng Technol 8(3):403–408

    Article  Google Scholar 

  5. Yan JW, Lai SK, He LH (2019) Nonlinear dynamic behavior of single-layer graphene under uniformly distributed loads. Compos B Eng 165:473–490

    Article  Google Scholar 

  6. Wang J, Manesh KM (2010) Motion control at the nanoscale. Small 6(3):338–345

    Article  Google Scholar 

  7. Šípová-Jungová H, Andrén D, Jones S et al (2020) Nanoscale inorganic motors driven by light: principles, realizations, and opportunities. Chem Rev 120(1):269–287

    Article  Google Scholar 

  8. Fennimore AM, Yuzvinsky TD, Han WQ et al (2003) Rotational actuators based on carbon nanotubes. Nature 424(6947):408–410

    Article  Google Scholar 

  9. Lohrasebi A, Jamali Y (2011) Computational modeling of a rotary nanopump. J Mol Graph Model 29(8):1025–1029

    Article  Google Scholar 

  10. Li J, Wang X, Zhao L et al (2014) Rotation motion of designed nano-turbine. Sci Rep 4(1):5846

    Article  Google Scholar 

  11. Ding R, Cao Z, Wu Z et al (2021) All-in-one high output rotary electrostatic nanogenerators based on charge pumping and voltage multiplying. ACS Nano 15(10):16861–16869

    Article  Google Scholar 

  12. Lin HH, Croy A, Gutierrez R et al (2022) A nanographene disk rotating a single molecule gear on a Cu(111) surface. Nat Nanotechnol 33(17):175701

    Article  Google Scholar 

  13. Li C, Liu JJ, Cheng M et al (2017) Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces. Compos B Eng 116:153–169

    Article  Google Scholar 

  14. Fu J, Hou Y, Gao X et al (2018) Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density. Nano Energy 52:391–401

    Article  Google Scholar 

  15. Yan JW, Lai SK (2018) Superelasticity and wrinkles controlled by twisting circular graphene. Comput Methods Appl Mech Eng 338:634–656

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu WP, Huai YL, Xu MB et al (2021) Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids. Mech Syst Signal Process 159:107833

    Article  Google Scholar 

  17. Yang Y, Lim CW (2012) Non-classical stiffness strengthening size effects for free vibration of a nonlocal nanostructure. Int J Mech Sci 54(1):57–68

    Article  Google Scholar 

  18. Lim CW, Wang CM (2007) Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams. J App Phys 101(5):054312

    Article  Google Scholar 

  19. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Math Mech 33:295–361

    Article  MATH  Google Scholar 

  20. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    Article  MathSciNet  MATH  Google Scholar 

  21. Eringen AC (1966) Mechanics of micromorphic materials. In: Görtler H (ed) Applied mechanics. Springer, Berlin, pp 131–138

    Chapter  Google Scholar 

  22. Yang F, Chong ACM, Lam DCC et al (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  MATH  Google Scholar 

  23. Gurtin ME, Weissmüller J, Larché FC (1998) A general theory of curved deformable interfaces in solids at equilibrium. Philos Mag 78:1093–1109

    Article  Google Scholar 

  24. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    Article  MathSciNet  MATH  Google Scholar 

  25. Hamidi BA, Hosseini SA, Hayati H et al (2022) Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory. Mech Based Des Struct Mach 50(5):1491–1505

    Article  Google Scholar 

  26. Chen WQ, Ding HJ (2000) Bending of functionally graded piezoelectric rectangular plates. Acta Mech Solida Sin 13(4):312–319

    Google Scholar 

  27. Li L, Hu Y, Ling L (2015) Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Compos Struct 133:1079–1092

    Article  Google Scholar 

  28. Karami B, Janghorban M, Tounsi A (2019) Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng Comput 35(4):1297–1316

    Article  Google Scholar 

  29. Ebrahimi F, Mohammadi K, Barouti MM et al (2021) Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell. Waves Random Complex Media 31(6):1655–1681

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang S, Kang W, Yang W et al (2022) Hygrothermal effects on buckling behaviors of porous bi-directional functionally graded micro-/nanobeams using two-phase local/nonlocal strain gradient theory. Eur J Mech A Solid 94:104554

    Article  MathSciNet  MATH  Google Scholar 

  31. Luo TX, Mao QB, Zeng S et al (2021) Scale effect on the nonlinear vibration of piezoelectric sandwich nanobeams on Winkler foundation. J Vib Eng Technol 9(6):1289–1303

    Article  Google Scholar 

  32. Bian ZG, Lim CW, Chen WQ (2006) On functionally graded beams with integrated surface piezoelectric layers. Compos Struct 72(3):339–351

    Article  Google Scholar 

  33. Lim CW (2010) Is a nanorod (or nanotube) with a lower Young’s modulus stiffer? Is not Young’s modulus a stiffness indicator? Sci China Phys Mech 53(4):712–724

    Article  Google Scholar 

  34. Li C, Li S, Yao LQ et al (2015) Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models. Appl Math Model 39(15):4570–4585

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu XJ, Zheng ML, Wang XC (2017) On vibrations of nonlocal rods: Boundary conditions, exact solutions and their asymptotics. Int J Eng Sci 119:217–231

    Article  MathSciNet  MATH  Google Scholar 

  36. Mohammadi M, Safarabadi M, Rastgoo A et al (2016) Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment. Acta Mech 227(8):2207–2232

    Article  MathSciNet  MATH  Google Scholar 

  37. Li HN, Li C, Shen JP et al (2021) Vibration analysis of rotating functionally graded piezoelectric nanobeams based on the nonlocal elasticity theory. J Vib Eng Technol 9(6):1155–1173

    Article  Google Scholar 

  38. Alshorbagy AE, Eltaher MA, Mahmoud FF (2011) Free vibration characteristics of a functionally graded beam by finite element method. Appl Math Model 35(1):412–425

    Article  MathSciNet  MATH  Google Scholar 

  39. Lue CF, Chen WQ, Xu RQ et al (2008) Semi-analytical elasticity solutions for bi-directional functionally graded beams. Int J Solids Struct 45(1):258–275

    Article  MATH  Google Scholar 

  40. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  41. Wang Q (2002) On buckling of column structures with a pair of piezoelectric layers. Eng Struct 24(2):199–205

    Article  Google Scholar 

  42. Chen L, Nakamura M, Schindler TD et al (2012) Engineering controllable bidirectional molecular motors based on myosin. Nat Nanotechnol 7(4):252–256

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the research Grants from the Training Program for Young Backbone Teachers in Colleges and Universities of Henan Province in 2019 (Grant No. 2019GGJS280), the National Natural Science Foundation of China (No. 11972240), and China Postdoctoral Science Foundation (No. 2020M671574).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suihan Sui or Cheng Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Sui, S., Zhu, C. et al. Axial Free Vibration of Rotating FG Piezoelectric Nano-rods Accounting for Nonlocal and Strain Gradient Effects. J. Vib. Eng. Technol. 11, 537–549 (2023). https://doi.org/10.1007/s42417-022-00592-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00592-y

Keywords

Navigation