Skip to main content
Log in

Analysis of Quasi waves in Orthotropic Layer Bonded Between Piezoelectric Half-Spaces with Imperfect and Sliding Interfaces

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The objective of present work is to investigate seismic wave reflection/transmission in an orthotropic layer bonded between two piezoelectric half-spaces in presence of an imperfect corrugated superstratum and sliding lower interface.

Methods

Closed form analytical expressions for displacement field, electric potential, and velocity profile of quasi seismic waves are deduced for respective geomedia using time harmonic plane wave solution approach with appropriate boundary conditions. Rayleigh’s first-order approximation, generalized Snell’s law and spectrum theorem are used to determine the analytical solution for reflection, transmission (RT) coefficients for regularly and irregularly scattered waves.

Results

Numerical simulations for specific geophysical model have been carried out and results are presented through multiple plots to analyze the impact of incident angle, dimensionless layer width, sliding parameter, and corrugated boundary on resultant velocity profile and RT coefficients. The energy flux ratios of all regularly and irregularly propagating waves are also analyzed and portrayed against angle of incidence (AOI).

Conclusions

Reflection and transmission angle for all the quasi-waves are found monotonically increasing with rise in incident angle. Waves and material parameters are found to have different impact on resultant velocity and RT coefficients. Simulation also reveals the effect of two extrema of sliding parameter corresponding to welded and free contact on RT coefficients. The coefficients obtained by first-order approximation to corrugation are found to have proportional impact of corrugation amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Abd-Alla AN, Al-Sheikh FA, Al-Hossain AY (2012) The reflection phenomena of quasi-vertical transverse waves in piezoelectric medium under initial stresses. Meccanica 47(3):731–744. https://doi.org/10.1007/s11012-011-9485-2

    Article  MathSciNet  Google Scholar 

  2. Abd-Alla et al (2014) Mathematical analysis of the reflection phenomenon of longitudinal waves at nano anisotropic thermo-piezoelectric medium. J Comput Theor Nanosci 11(11):2329–2338. https://doi.org/10.1166/jctn.2014.3647

    Article  CAS  Google Scholar 

  3. Abd-Alla AN, Alsheikh FA (2009) Reflection and refraction of plane quasi-longitudinal waves at an interface of two piezoelectric media under initial stresses. Arch Appl Mech 79(9):843–857. https://doi.org/10.1007/s00419-008-0257-y

    Article  Google Scholar 

  4. Achenbach JD (1976) Wave propagation in elastic solids. North Holland Pub. Comp, New York

    Google Scholar 

  5. Adams GG (2000) Radiation of body waves induced by the sliding of an elastic half-space against a rigid surface. J Appl Mech 67(1):1–5. https://doi.org/10.1115/1.321144

    Article  MathSciNet  Google Scholar 

  6. Al-Furjan et al (2023) Wave propagation analysis of micro air vehicle wings with honeycomb core covered by porous FGM and nanocomposite magnetostrictive layers. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2164378

    Article  Google Scholar 

  7. Al-Furjan et al (2022) Slamming impact induced hydrodynamic response in wave-piercing catamaran beam elements with controller. Ocean Eng 266(4):112908. https://doi.org/10.1016/j.oceaneng.2022.112908

    Article  MathSciNet  Google Scholar 

  8. Al-Furjan et al (2023) Nano supercapacitors with practical application in aerospace technology: vibration and wave propagation analysis. Aerospace Sci Technol 133:108082. https://doi.org/10.1016/j.ast.2022.108082

    Article  Google Scholar 

  9. Al-Furjan et al (2022) Combination of FEM-DQM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories. Thin-Walled Struct 178:109495. https://doi.org/10.1016/j.tws.2022.109495

    Article  Google Scholar 

  10. Al-Furjan et al (2022) A review on fabrication techniques and tensile properties of glass, carbon, and Kevlar fiber reinforced rolymer composites. J Market Res 19:2930–2959. https://doi.org/10.1016/j.jmrt.2022.06.008

    Article  CAS  Google Scholar 

  11. Al-Furjan et al (2022) On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2030499

    Article  MathSciNet  Google Scholar 

  12. Al-Furjan, et al (2022) Dynamic instability of nanocomposite piezoelectric-leptadenia pyrotechnica rheological elastomer-porous functionally graded materials micro viscoelastic beams at various strain gradient higher-order theories. Polym Compos 43(1):282–298. https://doi.org/10.1002/pc.26373

    Article  CAS  Google Scholar 

  13. Al-Furjan et al (2022) Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate. Mech Syst Signal Process 178:109269. https://doi.org/10.1016/j.ymssp.2022.109269

    Article  Google Scholar 

  14. Anitescu C et al (2019) Artificial neural network methods for the solution of second order boundary value problems. Comput, Mater Contin 59(1):345–359. https://doi.org/10.32604/cmc.2019.06641

    Article  Google Scholar 

  15. Asano S (1960) Reflection and refraction of elastic waves at a corrugated boundary surface. Part I. The case of incidence of SH wave. Bull Earthq Res Inst 38(2):177–197. https://doi.org/10.15083/0000033849

    Article  Google Scholar 

  16. Chaki MS, Singh AK (2021) Scattering and propagation characteristics of SH wave in reduced Cosserat isotropic layered structure at irregular boundaries. Math Methods Appl Sci 44(7):6143–6163. https://doi.org/10.1002/mma.7176

    Article  MathSciNet  Google Scholar 

  17. Chattopadhyay A et al (2009) Reflection and refraction of plane quasi-P waves at a corrugated interface between distinct triclinic elastic half spaces. Int J Solids Struct 46(17):3241–3256. https://doi.org/10.1016/j.ijsolstr.2009.04.016

    Article  Google Scholar 

  18. Chattopadhyay A, Kumari P, Sharma VK (2011) Reflection and refraction of three dimensional plane quasi-P waves at a corrugated surface between distinct triclinic elastic half spaces. GEM - Int J Geomathematics 2(2):219–253. https://doi.org/10.1007/s13137-011-0022-1

    Article  MathSciNet  Google Scholar 

  19. Chattopadhyay A, Rajneesh (2006) Reflection and refraction of waves at the interface of an isotropic medium over a highly anisotropic medium. Acta Geophys 54(3):239–249. https://doi.org/10.2478/s11600-006-0022-y

    Article  ADS  Google Scholar 

  20. Chu C et al (2023) A nonlinear Chebyshev-based collocation technique to frequency analysis of thermally pre/post-buckled third-order circular sandwich plates. Commun Nonlinear Sci Numer Simul 118:107056. https://doi.org/10.2139/ssrn.4247960

    Article  MathSciNet  Google Scholar 

  21. Chu C et al (2022) Experimental study for the effect of hole notched in fracture mechanics of GLARE and GFRP composites subjected to quasi-static loading. Theor Appl Fract Mech 122:103624. https://doi.org/10.1016/j.tafmec.2022.103624

    Article  CAS  Google Scholar 

  22. Darinskii AN, Weihnacht M (2005) Interface waves on the sliding contact between identical piezoelectric crystals of general anisotropy. Wave Motion 43(1):67–77. https://doi.org/10.1016/j.wavemoti.2005.06.001

    Article  ADS  MathSciNet  Google Scholar 

  23. Das A et al (2019) Reflection and refraction of plane waves at the loosely bonded common interface of piezoelectric fibre-reinforced and fibre-reinforced composite media. Ultrasonics 94:131–144. https://doi.org/10.1016/j.ultras.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  24. Goyal S, Sahu S, Mondal S (2020) Influence of imperfect bonding on the reflection and transmission of QP-wave at the interface of two functionally graded piezoelectric materials. Wave Motion 92(4):102431. https://doi.org/10.1016/j.wavemoti.2019.102431

    Article  MathSciNet  Google Scholar 

  25. Guo X, Wei P (2014) Effects of initial stress on the reflection and transmission waves at the interface between two piezoelectric half spaces. Int J Solids Struct 51(21–22):3735–3751. https://doi.org/10.1016/j.ijsolstr.2014.07.008

    Article  Google Scholar 

  26. Gupta S, Bhengra N, Ahmed M (2018) The study of reflection/transmission phenomena in a corrugated interface between two magnetoelastic transversely isotropic media. Arab J Geosci. https://doi.org/10.1007/s12517-018-3883-x

    Article  Google Scholar 

  27. Gupta S, Pramanik S, Smita (2021) Exemplification in exact and approximate secular equation of surface wave along distinct interfaces with sliding contact. Mech Solids 56(5):819–837. https://doi.org/10.3103/S0025654421050101

    Article  ADS  Google Scholar 

  28. Gupta S et al (2020) Reflection and refraction phenomena of shear horizontal waves at the interfaces of sandwiched anisotropic magnetoelastic medium with corrugated boundaries. Eur Phys J Plus 135(9):737. https://doi.org/10.1140/epjp/s13360-020-00767-0

    Article  Google Scholar 

  29. Hadi Hajmohammad M, Farrokhian A, Kolahchi R (2021) Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling. Ocean Eng 234:109269. https://doi.org/10.1016/j.oceaneng.2021.109269

    Article  Google Scholar 

  30. Hajmohammad et al (2021) Evaluation of tensile strength and elastic modulus of 7075–T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method. J Alloys Compd 886:161261. https://doi.org/10.1016/j.jallcom.2021.161261

    Article  CAS  Google Scholar 

  31. Iman RL, Conover WJ (2007) A distribution-free approach to inducing rank correlation among input variables. Commun Stat-Simul Comput 11(3):311–334. https://doi.org/10.1080/03610918208812265

    Article  Google Scholar 

  32. Kakar R (2015) Dispersion of Love wave in an isotropic layer sandwiched between orthotropic and prestressed inhomogeneous half-spaces. Latin Am J Solids Struct 12(10):1934–1949. https://doi.org/10.1590/1679-78251918

    Article  Google Scholar 

  33. Kaur J, Tomar SK, Kaushik VP (2005) Reflection and refraction of SH-waves at a corrugated interface between two laterally and vertically heterogeneous viscoelastic solid half-spaces. Int J Solids Struct 42(13):3621–3643. https://doi.org/10.1016/j.ijsolstr.2004.11.014

    Article  Google Scholar 

  34. Kolahchi R, Keshtegar B, Trung NT (2021) Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions. J Sandwich Struct Mater 24(1):643–662. https://doi.org/10.1177/10996362211020388

    Article  Google Scholar 

  35. Kumari P, Neha (2020) Reflection/transmission of qP(/qSV) wave through orthotropic medium between self-reinforced and orthotropic half-spaces. AIP Conf Proc 2214:020002. https://doi.org/10.1063/5.0003368

    Article  Google Scholar 

  36. Kumari P, Srivastava R (2021) On reflection and transmission of qP waves in initially stressed viscoelastic triclinic layer between distinct triclinic geomedia with sliding interface. Waves Random Complex Media. https://doi.org/10.1080/17455030.2021.2006358

    Article  Google Scholar 

  37. Motezaker et al (2021) Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load. Polym Compos 42(8):4073–4081. https://doi.org/10.1002/pc.26118

    Article  CAS  Google Scholar 

  38. Shearer PM (2005) Introduction to seismology, 2nd edn. Cambridge University Press, UK

    Google Scholar 

  39. Pandit DK, Kundu S (2017) Propagation of love wave in viscoelastic sandy medium lying over pre-stressed orthotropic half-space. Procedia Eng 173:996–1002. https://doi.org/10.1016/j.proeng.2016.12.170

    Article  Google Scholar 

  40. Pandit DK, Kundu S, Gupta S (2017) Propagation of Love waves in a prestressed Voigt-type viscoelastic orthotropic functionally graded layer over a porous half-space. Acta Mech 228(3):871–880. https://doi.org/10.1007/s00707-016-1741-z

    Article  MathSciNet  Google Scholar 

  41. Pham K, Maurel A, Marigo JJ (2021) Revisiting imperfect interface laws for two-dimensional elastodynamics. Proc Royal Soc A: Math, Phys Eng Sci. https://doi.org/10.1098/rspa.2020.0519

    Article  Google Scholar 

  42. Ray A, Singh AK (2021) Impact of imperfect corrugated interface in piezoelectric-piezomagnetic composites on reflection and refraction of plane waves. J Acoust Soc America 150(1):573. https://doi.org/10.1121/10.0005544

    Article  ADS  Google Scholar 

  43. Saltelli A et al (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270. https://doi.org/10.1016/j.cpc.2009.09.018

    Article  ADS  MathSciNet  CAS  Google Scholar 

  44. Samaniego E et al (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790. https://doi.org/10.1016/j.cma.2019.112790

    Article  ADS  MathSciNet  Google Scholar 

  45. Shuvalov AL, Gorkunova AS (1999) Cutting-off effect at reflection-transmission of acoustic waves in anisotropic media with sliding-contact interfaces. Wave Motion 30(4):345–365. https://doi.org/10.1016/S0165-2125(99)00017-7

    Article  ADS  MathSciNet  Google Scholar 

  46. Singh SS, Lalvohbika J (2018) Response of corrugated interface on incident qsv-wave in monoclinic elastic half-spaces. Int J Appl Mech Eng 23(3):727–750. https://doi.org/10.2478/ijame-2018-0040

    Article  Google Scholar 

  47. Singh SS, Tomar SK (2007) Quasi-P-waves at a corrugated interface between two dissimilar monoclinic elastic half-spaces. Int J Solids Struct 44(1):197–228. https://doi.org/10.1016/j.ijsolstr.2006.04.025

    Article  Google Scholar 

  48. Udias A (1999) Principles of seismology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  49. Vattré A, Pan E, Chiaruttini V (2021) Free vibration of fully coupled thermoelastic multilayered composites with imperfect interfaces. Compos Struct 259:113203. https://doi.org/10.1016/j.compstruct.2020.113203

    Article  CAS  Google Scholar 

  50. Vinh PC, Anh VTN (2018) Rayleigh waves in a layered orthotropic elastic half-space with sliding contact. J Vib Control 24(10):2070–2079. https://doi.org/10.1177/1077546316677211

    Article  MathSciNet  Google Scholar 

  51. Vu-Bac N et al (2016) A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv Eng Softw 100(12):19–31. https://doi.org/10.1016/j.advengsoft.2016.06.005

    Article  Google Scholar 

  52. Wan et al (2023) Application of DQHFEM for free and forced vibration, energy absorption, and post-buckling analysis of a hybrid nanocomposite viscoelastic rhombic plate assuming CNTs’ waviness and agglomeration. Mech Syst Signal Process 189:110064. https://doi.org/10.1016/j.ymssp.2022.110064

    Article  Google Scholar 

  53. Xu C, Gertner GZ (2007) Extending a global sensitivity analysis technique to models with correlated parameters. Comput Stat Data Anal 51(12):5579–5590. https://doi.org/10.1016/j.csda.2007.04.003

    Article  MathSciNet  Google Scholar 

  54. Xu C, Gertner GZ (2008) Uncertainty and sensitivity analysis for models with correlated parameters. Reliab Eng Syst Saf 93(10):1563–1573. https://doi.org/10.1016/j.ress.2007.06.003

    Article  Google Scholar 

  55. Yuan X, Zhu ZH (2012) Reflection and refraction of plane waves at interface between two piezoelectric media. Acta Mech 223(12):2509–2521. https://doi.org/10.1007/s00707-012-0728-7

    Article  MathSciNet  Google Scholar 

  56. Yuan X, Zhu ZH (2013) Wave reflection in piezoelectric half-plane. Int J Appl Mech 5(2):1350014. https://doi.org/10.1142/S1758825113500142

    Article  Google Scholar 

  57. Zhang Y, Gao Q (2021) Calculation of reflection and transmission coefficients for waves in multilayered piezoelectric structures using the mixed variable method. J Acoust Soc America 150(6):4037. https://doi.org/10.1121/10.0007462

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the reviewers for their valuable suggestions and insightful comments which leads to enormous improvement in the paper.

Funding

The authors have no relevant financial or non-financial interests to disclose. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pato Kumari.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Appendix 1: The expressions for \({\kappa }_{i}\),\({\kappa }_{jn}\) and \({\kappa }_{jn}^{^{\prime}}\),\(i=0,\dots ,2\) and \(j=3,\dots ,6\) and subexpressions for Eqs. (44), (47) and (48)

$${\kappa }_{0}=\frac{1}{\left({e}_{15}^{^{\prime}}{\mathrm{sin}}^{2}{\theta }_{0}+{e}_{33}^{^{\prime}}{\mathrm{cos}}^{2}{\theta }_{0}\right)}\left[{{\rho }_{3}{c}_{0}^{2}-C}_{44}^{^{\prime}}{\mathrm{sin}}^{2}{\theta }_{0}-{C}_{33}^{^{\prime}}{\mathrm{cos}}^{2}{\theta }_{0}+\left({C}_{13}^{^{\prime}}+{C}_{44}^{^{\prime}}\right){m}_{0}sin{\theta }_{0}cos{\theta }_{0}\right]$$
$${\kappa }_{i}=\frac{1}{\left({e}_{15}^{^{\prime}}{\mathrm{sin}}^{2}{\theta }_{i}+{e}_{33}^{^{\prime}}{\mathrm{cos}}^{2}{\theta }_{i}\right)}\left[{{\rho }_{3}{c}_{i}^{2}-C}_{44}^{^{\prime}}{\mathrm{sin}}^{2}{\theta }_{i}-{C}_{33}^{^{\prime}}{\mathrm{cos}}^{2}{\theta }_{i}-\left({C}_{13}^{^{\prime}}+{C}_{44}^{^{\prime}}\right){m}_{0}sin{\theta }_{i}cos{\theta }_{i}\right] (i=1 ,2)$$
$${\kappa }_{j}=\frac{1}{\left({e}_{15}{\mathrm{sin}}^{2}{\theta }_{i}+{e}_{33}{\mathrm{cos}}^{2}{\theta }_{i}\right)}\left[{\rho }_{1}{c}_{i}^{2}-{C}_{44}{\mathrm{sin}}^{2}{\theta }_{i}-{C}_{33}{\mathrm{cos}}^{2}{\theta }_{i}+\left({C}_{13}+{C}_{44}\right){m}_{0}sin{\theta }_{i}cos{\theta }_{i}\right]$$
$${\kappa }_{jn}=\frac{1}{\left({e}_{15}{\mathrm{sin}}^{2}{\theta }_{in}+{e}_{33}{\mathrm{cos}}^{2}{\theta }_{in}\right)}\left[{\rho }_{1}{c}_{i}^{2}-{C}_{44}{\mathrm{sin}}^{2}{\theta }_{in}-{C}_{33}{\mathrm{cos}}^{2}{\theta }_{in}+\left({C}_{13}+{C}_{44}\right){m}_{0}sin{\theta }_{in}cos{\theta }_{in}\right]$$
$${\kappa }_{jn}^{^{\prime}}=\frac{1}{\left({e}_{15}{\mathrm{sin}}^{2}{\theta }_{in}^{^{\prime}}+{e}_{33}{\mathrm{cos}}^{2}{\theta }_{in}^{^{\prime}}\right)}\left[{\rho }_{1}{c}_{i}^{2}-{C}_{44}{\mathrm{sin}}^{2}{\theta }_{in}^{^{\prime}}-{C}_{33}{\mathrm{cos}}^{2}{\theta }_{in}^{^{\prime}}+\left({C}_{13}+{C}_{44}\right){m}_{0}sin{\theta }_{in}^{^{\prime}}cos{\theta }_{in}^{^{\prime}}\right]$$

\(j=3\, \mathrm{to}\, 6; i=9 \mathrm{to}\) \(12\) respectively. (i.e. for \(j=3\), \(i=\) 9, for \(j=4\), \(i=10,\) and so on).

$${s}_{0}={C}_{11}^{^{\prime}}{m}_{0}-{C}_{13}^{^{\prime}}{R}_{0}+{e}_{31}^{^{\prime}}{\kappa }_{0}{R}_{0}, {s}_{1}={C}_{13}^{^{\prime}}{m}_{0}-{C}_{33}^{^{\prime}}{R}_{0}+{e}_{33}^{^{\prime}}{\kappa }_{0}{R}_{0}$$
$${\gamma }_{1}=\frac{{C}_{13}^{\mathrm{^{\prime}}}{m}_{1}{S}_{0}+{C}_{33}^{\mathrm{^{\prime}}}{R}_{1}+{e}_{33}^{\mathrm{^{\prime}}}{\kappa }_{1}{R}_{1}}{{C}_{13}^{\mathrm{^{\prime}}}{m}_{0}-{C}_{33}^{\mathrm{^{\prime}}}{R}_{0}+{e}_{33}^{\mathrm{^{\prime}}}{\kappa }_{0}{R}_{0}},{\gamma }_{2}=\frac{{C}_{13}^{\mathrm{^{\prime}}}{m}_{2}{S}_{0}+{C}_{33}^{\mathrm{^{\prime}}}{R}_{2}+{e}_{33}^{\mathrm{^{\prime}}}{\kappa }_{2}{R}_{2}}{{C}_{13}^{\mathrm{^{\prime}}}{m}_{0}-{C}_{33}^{\mathrm{^{\prime}}}{R}_{0}+{e}_{33}^{\mathrm{^{\prime}}}{\kappa }_{0}{R}_{0}},$$
$${\gamma }_{3}=\frac{-\sigma ({S}_{31}{m}_{3}{S}_{0}-{S}_{33}{R}_{3})}{{C}_{13}^{\mathrm{^{\prime}}}{m}_{0}-{C}_{33}^{\mathrm{^{\prime}}}{R}_{0}+{e}_{33}^{\mathrm{^{\prime}}}{\kappa }_{0}{R}_{0}}, {\gamma }_{4}=-\frac{\sigma \left({S}_{31}{m}_{4}{S}_{0}-{S}_{33}{R}_{4}\right)}{{C}_{13}^{\mathrm{^{\prime}}}{m}_{0}-{C}_{33}^{\mathrm{^{\prime}}}{R}_{0}+{e}_{33}^{\mathrm{^{\prime}}}{\kappa }_{0}{R}_{0}},$$
$${\gamma }_{5}={C}_{11}^{\mathrm{^{\prime}}}{m}_{1}+{C}_{13}^{\mathrm{^{\prime}}}{R}_{1}+{e}_{31}^{\mathrm{^{\prime}}}{\kappa }_{1}{R}_{1}, {\gamma }_{6}={C}_{11}^{\mathrm{^{\prime}}}{m}_{2}+{C}_{13}^{\mathrm{^{\prime}}}{R}_{2}+{e}_{31}^{\mathrm{^{\prime}}}{\kappa }_{2}{R}_{2}$$
$${\gamma }_{7}={C}_{13}^{\mathrm{^{\prime}}}{m}_{1}+{C}_{33}^{\mathrm{^{\prime}}}{R}_{1}+{e}_{33}^{\mathrm{^{\prime}}}{\kappa }_{1}{R}_{1}, {\gamma }_{8}={C}_{13}^{\mathrm{^{\prime}}}{m}_{2}+{C}_{33}^{\mathrm{^{\prime}}}{R}_{2}+{e}_{33}^{\mathrm{^{\prime}}}{\kappa }_{2}{R}_{2},\sigma =\left(1-\zeta \right)\alpha$$
$${\gamma }_{9}=\frac{{m}_{5}{R}_{5}+{S}_{0}}{{-m}_{3}{R}_{3}+{S}_{0}},{\gamma }_{10}=\frac{{m}_{6}{R}_{6}+{S}_{0}}{{-m}_{3}{R}_{3}+{S}_{0}},{\gamma }_{11}=\frac{{C}_{44}({m}_{9}{R}_{9}-{S}_{0})}{{S}_{55}({-m}_{3}{R}_{3}+{S}_{0})},{\gamma }_{12}=\frac{{C}_{44}({m}_{10}{R}_{10}-{S}_{0})}{{S}_{55}({-m}_{3}{R}_{3}+{S}_{0})}$$
$${\gamma }_{13}=\frac{{S}_{31}{m}_{5}{S}_{0}+{S}_{33}{R}_{5}}{{S}_{31}{m}_{3}{S}_{0}-{S}_{33}{R}_{3}} , {\gamma }_{14}=\frac{{S}_{31}{m}_{6}{S}_{0}+{S}_{33}{R}_{6}}{{S}_{31}{m}_{3}{S}_{0}-{S}_{33}{R}_{3}}, {\gamma }_{15}=\frac{{S}_{31}{m}_{9}{S}_{0}+{S}_{33}{R}_{9}}{{S}_{31}{m}_{3}{S}_{0}-{S}_{33}{R}_{3}}, {\gamma }_{16}=\frac{{S}_{31}{m}_{10}{S}_{0}+{S}_{33}{R}_{10}}{{S}_{31}{m}_{3}{S}_{0}-{S}_{33}{R}_{3}}$$
$${\gamma }_{17}=\frac{{m}_{7}{R}_{7}+{S}_{0}}{{-m}_{4}{R}_{4}+{S}_{0}},{\gamma }_{18}=\frac{{m}_{8}{R}_{8}+{S}_{0}}{{-m}_{4}{R}_{4}+{S}_{0}},{\gamma }_{19}=\frac{{C}_{44}({m}_{11}{R}_{11}-{S}_{0})}{{S}_{55}({-m}_{4}{R}_{4}+{S}_{0})},{\gamma }_{20}=\frac{{C}_{44}({m}_{12}{R}_{12}-{S}_{0})}{{S}_{55}({-m}_{4}{R}_{4}+{S}_{0})}$$
$${\gamma }_{21}=\frac{{S}_{31}{m}_{7}{S}_{0}+{S}_{33}{R}_{7}}{{S}_{31}{m}_{4}{S}_{0}-{S}_{33}{R}_{3}} , {\gamma }_{22}=\frac{{S}_{31}{m}_{8}{S}_{0}+{S}_{33}{R}_{8}}{{S}_{31}{m}_{4}{S}_{0}-{S}_{33}{R}_{3}},{\gamma }_{23}=\frac{{S}_{31}{m}_{11}{S}_{0}+{S}_{33}{R}_{11}}{{S}_{31}{m}_{4}{S}_{0}-{S}_{33}{R}_{4}}, {\gamma }_{24}=\frac{{S}_{31}{m}_{12}{S}_{0}+{S}_{33}{R}_{12}}{{S}_{31}{m}_{4}{S}_{0}-{S}_{33}{R}_{4}}$$

Appendix 2: Subexpressions used in Eqs. (52) and (53)

$${\gamma }_{9}^{\mathrm{^{\prime}}}={S}_{55}\left({m}_{5n}{R}_{5n}+{S}_{0}+nq\right){e}^{-i{R}_{5n}h},{\gamma }_{10}^{\mathrm{^{\prime}}}={S}_{55}({m}_{6n}{R}_{6n}+{S}_{0}+nq){e}^{-i{R}_{6n}h}$$
$${\gamma }_{11}^{\mathrm{^{\prime}}}={C}_{44}\left(-{m}_{9n}{R}_{9n}+{S}_{0}+nq\right){e}^{i{R}_{9n}h},{\gamma }_{12}^{\mathrm{^{\prime}}}={C}_{44}(-{m}_{10n}{R}_{10n}+{S}_{0}+nq){e}^{i{R}_{10n}h}$$
$${\gamma }_{13}^{\mathrm{^{\prime}}}={(S}_{31}{m}_{5n}{S}_{0}+{S}_{31}{m}_{5n}nq+{S}_{33}{R}_{5n}){e}^{-i{R}_{5n}h},{\gamma }_{14}^{\mathrm{^{\prime}}}={{(S}_{31}{m}_{6n}{S}_{0}+{S}_{31}{m}_{6n}nq+{S}_{33}R}_{6n}){e}^{-i{R}_{6n}h}$$
$$\gamma_{15}^{^{\prime}} = (C_{13} m_{9n} S_{0} + C_{13} m_{9n} nq - C_{33} R_{9n} - e_{33} \kappa_{3n} R_{9n} )e^{{iR_{9n} h}}$$
$${\gamma }_{16}^{^{\prime}}={{(C}_{13}{m}_{10n}{S}_{0}+{C}_{13}{m}_{10n}{S}_{0}nq-{C}_{33}R}_{10n}-{e}_{33}{\kappa }_{4n}{R}_{10n}){e}^{i{R}_{10n}h}$$
$${f}_{1}=-i{\xi }_{n}\left({\kappa }_{3}\frac{{I}_{3}}{{C}_{3}}{e}^{i{R}_{9}h}{R}_{9}+{\kappa }_{4}\frac{{J}_{3}}{{C}_{3}}{e}^{i{R}_{10}h}{R}_{10}\right)$$
$${f}_{2}=i{\xi }_{n}\left({m}_{3}{e}^{i{R}_{3}h}{R}_{3}+{m}_{5}\frac{{E}_{3}}{{C}_{3}}{e}^{-i{R}_{5}h}{R}_{5}+{m}_{6}\frac{{F}_{3}}{{C}_{3}}{e}^{-i{R}_{6}h}{R}_{6}-{m}_{9}\frac{{I}_{3}}{{C}_{3}}{e}^{i{R}_{9}h}{R}_{9}- {m}_{10}\frac{{J}_{3}}{{C}_{3}}{e}^{i{R}_{10}h}{R}_{10}\right)$$
$${f}_{3}=i{\xi }_{n}\left[{\alpha }_{1}{e}^{i{R}_{3}h}+{\alpha }_{2}{e}^{-i{R}_{5}h}\frac{{E}_{3}}{{C}_{3}}+{\alpha }_{3}{e}^{-i{R}_{6}h}\frac{{F}_{3}}{{C}_{3}}+{\alpha }_{4}{e}^{i{R}_{9}h}\frac{{I}_{3}}{{C}_{3}}+{\alpha }_{5}{e}^{i{R}_{10}h}\frac{{J}_{3}}{{C}_{3}}\right]$$
$${\alpha }_{1}=-{S}_{55}\left({R}_{3}^{2}{m}_{3}-{R}_{3}{S}_{0}\right)+\left({S}_{31}{-S}_{11}\right){m}_{3}{S}_{0}nq+\left({S}_{33}{-S}_{31}\right){R}_{3}nq$$
$${\alpha }_{2}=-{S}_{55}\left({R}_{5}^{2}{m}_{5}+{R}_{5}{S}_{0}\right)+\left({S}_{31}{-S}_{11}\right){m}_{5}{S}_{0}nq+\left({S}_{33}{-S}_{31}\right){R}_{5}nq$$
$${\alpha }_{3}=-{S}_{55}\left({R}_{6}^{2}{m}_{6}+{R}_{6}{S}_{0}\right)+\left({S}_{31}{-S}_{11}\right){m}_{6}{S}_{0}nq+\left({S}_{33}{-S}_{31}\right){R}_{6}nq$$
$${\alpha }_{4}={C}_{44}\left({R}_{9}^{2}{m}_{9}-{R}_{9}{S}_{0}\right)-{e}_{15}{\kappa }_{3}{S}_{0}{R}_{9}-\left({C}_{31}{-C}_{11}\right){m}_{9}{S}_{0}nq+\left({C}_{33}{-C}_{31}\right){R}_{9}nq+\left({e}_{33}{-e}_{31}\right){R}_{9}nq{\kappa }_{3},{\alpha }_{5}={C}_{44}\left({R}_{10}^{2}{m}_{10}-{R}_{10}{S}_{0}\right)-{e}_{15}{\kappa }_{4}{S}_{0}{R}_{10}-\left({C}_{31}{-C}_{11}\right){m}_{10}{S}_{0}nq+\left({C}_{33}{-C}_{31}\right){R}_{10}nq{\kappa }_{3} +\left({e}_{33}{-e}_{31}\right){R}_{10}nq{\kappa }_{4}$$
$${f}_{4}=i{\xi }_{n}\left[{\alpha }_{6}{e}^{i{R}_{3}h}+{\alpha }_{7}{e}^{-i{R}_{5}h}\frac{{E}_{3}}{{C}_{3}}+{\alpha }_{8}{e}^{-i{R}_{6}h}\frac{{F}_{3}}{{C}_{3}}+{\alpha }_{9}{e}^{i{R}_{9}h}\frac{{I}_{3}}{{C}_{3}}+{\alpha }_{10}{e}^{i{R}_{10}h}\frac{{J}_{3}}{{C}_{3}}\right]$$
$${\alpha }_{6}={S}_{31}{m}_{3}{R}_{3}{S}_{0}-{S}_{33}{R}_{3}^{2}-2{S}_{55}nq\left(-{R}_{3}{m}_{3}+{S}_{0}\right), {\alpha }_{7}={-S}_{31}{m}_{5}{R}_{5}{S}_{0}-{S}_{33}{R}_{5}^{2}-2{S}_{55}nq\left({R}_{5}{m}_{5}+{S}_{0}\right),{\alpha }_{8}={-S}_{31}{m}_{6}{R}_{6}{S}_{0}-{S}_{33}{R}_{6}^{2}-2{S}_{55}nq\left({R}_{6}{m}_{6}+{S}_{0}\right)$$
$${\alpha }_{9}={-C}_{31}{m}_{9}{R}_{9}{S}_{0}+{C}_{33}{R}_{9}^{2}+{e}_{33}{\kappa }_{3}{R}_{9}^{2}+2nq\left\{{C}_{44}\left(-{R}_{9}{m}_{9}+{S}_{0}\right)+{e}_{15}{\kappa }_{3}{S}_{0})\right\}$$
$${\alpha }_{10}={-C}_{31}{m}_{10}{R}_{10}{S}_{0}+{C}_{33}{R}_{10}^{2}+{e}_{33}{\kappa }_{4}{R}_{10}^{2}+2nq\left\{{C}_{44}\left(-{R}_{10}{m}_{10}+{S}_{0}\right)+{e}_{15}{\kappa }_{4}{S}_{0})\right\}$$
$$\gamma_{9}^{{^{\prime\prime}}} = S_{55} \left( {m^{\prime}_{5n} R^{\prime}_{5n} + S_{0} - nq} \right)e^{{ - iR_{5n}^{^{\prime}} h}} ,\gamma_{10}^{{^{\prime\prime}}} = S_{55} \left( {m_{6n}^{^{\prime}} R{^{\prime}}_{6n} + S_{0} - nq} \right)e^{{ - iR_{6n}^{^{\prime}} h}}$$
$$\gamma_{11}^{{^{\prime\prime}}} = C_{44} \left( { - m_{9n}^{^{\prime}} R^{\prime}_{9n} + S_{0} - nq} \right)e^{{iR_{9n}^{^{\prime}} h}} ,\gamma_{12}^{{^{\prime\prime}}} = C_{44} \left( { - m_{10n}^{^{\prime}} R{^{\prime}}_{10n} + S_{0} - nq} \right)e^{{iR_{10n}^{^{\prime}} h}}$$
$$\gamma_{13}^{{^{\prime\prime}}} = (S_{31} m_{5n}^{^{\prime}} S_{0} - S_{31} m_{5n}^{^{\prime}} nq + S_{33} R^{\prime}_{5n} )e^{{ - iR_{5n}^{^{\prime}} h}} ,\gamma_{14}^{{^{\prime\prime}}} = (S_{31} m_{6n}^{^{\prime}} S_{0} - S_{31} m_{6n}^{^{\prime}} nq + S_{33} R{^{\prime}}_{6n} )e^{{ - iR_{6n}^{^{\prime}} h}}$$
$$\gamma_{15}^{^{\prime\prime}} = (C_{13} m_{9n}^{^{\prime}} S_{0} - C_{13} m_{9n}^{^{\prime}} nq - C_{33} R^{\prime}_{9n} - e_{33} \kappa_{3n}^{^{\prime}} R^{\prime}_{9n} )e^{{iR_{9n}^{^{\prime}} h}}$$
$$\gamma_{16}^{^{\prime\prime}} = (C_{13} m_{10n}^{^{\prime}} S_{0} - C_{13} m_{10n}^{^{\prime}} nq - C_{33} R^{\prime}_{10n} - e_{33} \kappa_{4n}^{^{\prime}} R^{\prime}_{10n} )e^{{iR_{10n}^{^{\prime}} h}}$$
$${f}_{5}=i{\xi }_{-n}\left({\kappa }_{3}\frac{{I}_{3}}{{C}_{3}}{e}^{i{R}_{9}h}{R}_{9}+{\kappa }_{4}\frac{{J}_{3}}{{C}_{3}}{e}^{i{R}_{10}h}{R}_{10}\right)$$
$${f}_{6}=i{\xi }_{-n}\left({m}_{3}{e}^{i{R}_{3}h}{R}_{3}+{m}_{5}\frac{{E}_{3}}{{C}_{3}}{e}^{-i{R}_{5}h}{R}_{5}+{m}_{6}\frac{{F}_{3}}{{C}_{3}}{e}^{-i{R}_{6}h}{R}_{6}-{m}_{9}\frac{{I}_{3}}{{C}_{3}}{e}^{i{R}_{9}h}{R}_{9}- {m}_{10}\frac{{J}_{3}^{^{\prime}}}{{C}_{3}}{e}^{i{R}_{10}h}{R}_{10}\right)$$
$${f}_{7}=i{\xi }_{-n}\left[{\alpha }_{1}^{^{\prime}}{e}^{i{R}_{3}h}+{\alpha }_{2}^{^{\prime}}{e}^{-i{R}_{5}h}\frac{{E}_{3}}{{C}_{3}}+{\alpha }_{3}^{^{\prime}}{e}^{-i{R}_{6}h}\frac{{F}_{3}}{{C}_{3}}+{\alpha }_{4}^{^{\prime}}{e}^{i{R}_{9}h}\frac{{I}_{3}}{{C}_{3}}+{\alpha }_{5}^{^{\prime}}{e}^{i{R}_{10}h}\frac{{J}_{3}}{{C}_{3}}\right]$$
$${\alpha }_{1}^{^{\prime}}=-{S}_{55}\left({R}_{3}^{2}{m}_{3}-{R}_{3}{S}_{0}\right)-\left({S}_{31}{-S}_{11}\right){m}_{3}{S}_{0}nq-\left({S}_{33}{-S}_{31}\right){R}_{3}nq$$
$${\alpha }_{2}^{^{\prime}}=-{S}_{55}\left({R}_{5}^{2}{m}_{5}+{R}_{5}{S}_{0}\right)-\left({S}_{31}{-S}_{11}\right){m}_{5}{S}_{0}nq-\left({S}_{33}{-S}_{31}\right){R}_{5}nq$$
$${\alpha }_{3}^{^{\prime}}=-{S}_{55}\left({R}_{6}^{2}{m}_{6}+{R}_{5}{S}_{0}\right)-\left({S}_{31}{-S}_{11}\right){m}_{6}{S}_{0}nq-\left({S}_{33}{-S}_{31}\right){R}_{6}nq$$
$${\alpha }_{4}^{\mathrm{^{\prime}}}={C}_{44}\left({R}_{9}^{2}{m}_{9}-{R}_{9}{S}_{0}\right)-{e}_{15}{\kappa }_{3}{S}_{0}{R}_{9}+\left({C}_{31}{-C}_{11}\right){m}_{9}{S}_{0}nq-\left({C}_{33}{-C}_{31}\right){R}_{9}nq-\left({e}_{33}{-e}_{31}\right){R}_{9}nq{\kappa }_{3},{\alpha }_{5}^{\mathrm{^{\prime}}}={C}_{44}\left({R}_{10}^{2}{m}_{10}-{R}_{10}{S}_{0}\right)-{e}_{15}{\kappa }_{4}{S}_{0}{R}_{10}+\left({C}_{31}{-C}_{11}\right){m}_{10}{S}_{0}nq-\left({C}_{33}{-C}_{31}\right){R}_{10}nq-\left({e}_{33}{-e}_{31}\right){R}_{10}nq{\kappa }_{4}$$
$${f}_{8}=i{\xi }_{-n}\left[{\alpha }_{6}^{^{\prime}}{e}^{i{R}_{3}h}+{\alpha }_{7}^{^{\prime}}{e}^{-i{R}_{5}h}\frac{{E}_{3}}{{C}_{3}}+{\alpha }_{8}^{^{\prime}}{e}^{-i{R}_{6}h}\frac{{F}_{3}}{{C}_{3}}+{\alpha }_{9}^{^{\prime}}{e}^{i{R}_{9}h}\frac{{I}_{3}}{{C}_{3}}+{\alpha }_{10}^{^{\prime}}{e}^{i{R}_{10}h}\frac{{J}_{3}}{{C}_{3}}\right]$$
$${\alpha }_{6}^{\mathrm{^{\prime}}}={S}_{31}{m}_{3}{R}_{3}{S}_{0}-{S}_{33}{R}_{3}^{2}+2{S}_{55}nq\left(-{R}_{3}{m}_{3}+{S}_{0}\right),{\alpha }_{7}^{\mathrm{^{\prime}}}={-S}_{31}{m}_{5}{R}_{5}{S}_{0}-{S}_{33}{R}_{5}^{2}+2{S}_{55}nq\left({R}_{5}{m}_{5}+{S}_{0}\right),{\alpha }_{8}^{\mathrm{^{\prime}}}={-S}_{31}{m}_{6}{R}_{6}{S}_{0}-{S}_{33}{R}_{6}^{2}+2{S}_{55}nq\left({m}_{6}{R}_{6}+{S}_{0}\right)$$
$${\alpha }_{9}^{\mathrm{^{\prime}}}={-C}_{31}{m}_{9}{R}_{9}{S}_{0}+{C}_{33}{R}_{9}^{2}+{e}_{33}{\kappa }_{3}{R}_{9}^{2}-2nq\left\{{C}_{44}\left(-{R}_{9}{m}_{9}+{S}_{0}\right)+{e}_{15}{\kappa }_{3}{S}_{0})\right\},$$
$${\alpha }_{10}^{^{\prime}}={-C}_{31}{m}_{10}{R}_{10}{S}_{0}+{C}_{33}{R}_{10}^{2}+{e}_{33}{\kappa }_{4}{R}_{10}^{2}-2nq\left\{{C}_{44}\left(-{R}_{10}{m}_{10}+{S}_{0}\right)+{e}_{15}{\kappa }_{4}{S}_{0})\right\}$$

Appendix 3: Subexpressions used in Eqs. (54) and (55)

$${\gamma }_{17}^{^{\prime}}={S}_{55}\left({m}_{7n}{R}_{7n}+{S}_{0}+nq\right){e}^{-i{R}_{7n}h}, {\gamma }_{18}^{^{\prime}}={S}_{55}({m}_{8n}{R}_{8n}+{S}_{0}+nq){e}^{-i{R}_{8n}h}$$
$${\gamma }_{19}^{\mathrm{^{\prime}}}={C}_{44}\left(-{m}_{11n}{R}_{11n}+{S}_{0}+nq\right){e}^{i{R}_{11n}h},{\gamma }_{20}^{\mathrm{^{\prime}}}={C}_{44}(-{m}_{12n}{R}_{12n}+{S}_{0}+nq){e}^{i{R}_{12n}h}$$
$${\gamma }_{21}^{\mathrm{^{\prime}}}={(S}_{31}{m}_{7n}{S}_{0}+{S}_{13}{m}_{7n}nq+{S}_{33}{R}_{5n}){e}^{-i{R}_{5n}h},{\gamma }_{22}^{\mathrm{^{\prime}}}={{(S}_{31}{m}_{8n}{S}_{0}+nq{S}_{31}{m}_{8n}+{S}_{33}R}_{8n}){e}^{-i{R}_{8n}h}$$
$${\gamma }_{23}^{^{\prime}}={{(C}_{13}{m}_{11n}{S}_{0}+nq{C}_{13}{m}_{11n}-{C}_{33}R}_{11n}-{e}_{33}{\kappa }_{3n}{R}_{11n}){e}^{i{R}_{11n}h}$$
$${\gamma }_{24}^{^{\prime}}={{(C}_{13}{m}_{12n}{S}_{0}+nq{C}_{13}{m}_{12n}-{C}_{33}R}_{12n}-{e}_{33}{\kappa }_{4n}{R}_{12n}){e}^{i{R}_{12n}h}$$
$${g}_{1}=-i{\xi }_{-n}\left({\kappa }_{5}\frac{{L}_{3}}{{D}_{3}}{e}^{i{R}_{11}h}{R}_{11}+{\kappa }_{6}\frac{{M}_{3}}{{D}_{3}}{e}^{i{R}_{12}h}{R}_{12}\right)$$
$${g}_{2}=i{\xi }_{-n}\left({m}_{4}{e}^{i{R}_{4}h}{R}_{4}+{m}_{7}\frac{{G}_{3}}{{D}_{3}}{e}^{-i{R}_{7}h}{R}_{7}+{m}_{8}\frac{{H}_{3}}{{D}_{3}}{e}^{-i{R}_{8}h}{R}_{8}-{m}_{11}\frac{{L}_{3}}{{D}_{3}}{e}^{i{R}_{11}h}{R}_{11}- {m}_{12}\frac{{M}_{3}}{{D}_{3}}{e}^{i{R}_{12}h}{R}_{12}\right)$$
$${g}_{3}=i{\xi }_{-n}\left[{\beta }_{1}{e}^{i{R}_{4}h}+{\beta }_{2}{e}^{-i{R}_{7}h}\frac{{G}_{3}}{{D}_{3}}+{\beta }_{3}{e}^{-i{R}_{8}h}\frac{{H}_{3}}{{D}_{3}}+{\beta }_{4}{e}^{i{R}_{11}h}\frac{{L}_{3}}{{D}_{3}}+{\beta }_{5}{e}^{i{R}_{12}h}\frac{{M}_{3}}{{D}_{3}}\right]$$
$${\beta }_{1}=-{S}_{55}\left({R}_{4}^{2}{m}_{4}-{R}_{4}{S}_{0}\right)+\left({S}_{31}{-S}_{11}\right){m}_{4}{S}_{0}nq+\left({S}_{33}{-S}_{31}\right){R}_{4}nq$$
$${\beta }_{2}=-{S}_{55}\left({R}_{7}^{2}{m}_{7}+{R}_{7}{S}_{0}\right)+\left({S}_{31}{-S}_{11}\right){m}_{7}{S}_{0}nq+\left({S}_{33}{-S}_{31}\right){R}_{7}nq$$
$${\beta }_{3}=-{S}_{55}\left({R}_{8}^{2}{m}_{8}+{R}_{8}{S}_{0}\right)+\left({S}_{31}{-S}_{11}\right){m}_{8}{S}_{0}nq+\left({S}_{33}{-S}_{31}\right){R}_{8}nq$$
$${\beta }_{4}={C}_{44}\left({R}_{11}^{2}{m}_{11}-{R}_{11}{S}_{0}\right)-{e}_{15}{\kappa }_{5}{S}_{0}{R}_{11}-\left({C}_{31}{-C}_{11}\right){m}_{11}{S}_{0}nq+\left({C}_{33}{-C}_{31}\right){R}_{11}nq+\left({e}_{33}{-e}_{31}\right){R}_{11}nq{\kappa }_{5},{\beta }_{5}={C}_{44}\left({R}_{12}^{2}{m}_{12}-{R}_{12}{S}_{0}\right)-{e}_{15}{\kappa }_{6}{S}_{0}{R}_{12}-\left({C}_{31}{-C}_{11}\right){m}_{12}{S}_{0}nq+\left({C}_{33}{-C}_{31}\right){R}_{12}nq{\kappa }_{6} +\left({e}_{33}{-e}_{31}\right){R}_{10}nq{\kappa }_{4}$$
$${g}_{4}=i{\xi }_{-n}\left[{\beta }_{6}{e}^{i{R}_{4}h}+{\beta }_{7}{e}^{-i{R}_{7}h}\frac{{G}_{3}}{{D}_{3}}+{\beta }_{8}{e}^{-i{R}_{8}h}\frac{{H}_{3}}{{D}_{3}}+{\beta }_{9}{e}^{i{R}_{11}h}\frac{{L}_{3}}{{D}_{3}}+{\beta }_{10}{e}^{i{R}_{12}h}\frac{{M}_{3}}{{D}_{3}}\right]$$
$${\beta }_{6}={S}_{31}{m}_{4}{R}_{4}{S}_{0}-{S}_{33}{R}_{4}^{2}-2nq{S}_{55}\left(-{R}_{4}{m}_{4}+{S}_{0}\right),{\beta }_{7}={-S}_{31}{m}_{7}{R}_{5}{S}_{0}-{S}_{33}{R}_{7}^{2}-2nq{S}_{55}\left({R}_{5}{m}_{7}+{S}_{0}\right), {\beta }_{8}={-S}_{31}{m}_{8}{R}_{6}{S}_{0}-{S}_{33}{R}_{8}^{2}-2{nqS}_{55}\left({R}_{6}{m}_{8}+{S}_{0}\right)$$
$${\beta }_{9}={-C}_{31}{m}_{11}{R}_{11}{S}_{0}+{C}_{33}{R}_{11}^{2}+{e}_{33}{\kappa }_{5}{R}_{11}^{2}+2nq\left\{{C}_{44}\left(-{R}_{11}{m}_{11}+{S}_{0}\right)+{e}_{15}{\kappa }_{5}{S}_{0})\right\},$$
$${\beta }_{10}={-C}_{31}{m}_{12}{R}_{12}{S}_{0}+{C}_{33}{R}_{12}^{2}+{e}_{33}{\kappa }_{6}{R}_{12}^{2}+2nq\left\{{C}_{44}\left(-{R}_{12}{m}_{12}+{S}_{0}\right)+{e}_{15}{\kappa }_{6}{S}_{0})\right\}.$$
$$\gamma_{17}^{{^{\prime\prime}}} = S_{55} \left( {m^{\prime}_{7n} R^{\prime}_{7n} + S_{0} - nq} \right)e^{{ - iR_{7n}^{^{\prime}} h}} ,\gamma_{18}^{{^{\prime\prime}}} = S_{55} \left( {m_{8n}^{^{\prime}} R{^{\prime}}_{8n} + S_{0} - nq} \right)e^{{ - iR_{8n}^{^{\prime}} h}}$$
$$\gamma_{19}^{{^{\prime\prime}}} = C_{44} \left( { - m_{11n}^{^{\prime}} R^{\prime}_{11n} + S_{0} - nq} \right)e^{{iR_{11n}^{^{\prime}} h}} ,\gamma_{20}^{{^{\prime\prime}}} = C_{44} \left( { - m_{12n}^{^{\prime}} R{^{\prime}}_{12n} + S_{0} - nq} \right)e^{{iR_{12n}^{^{\prime}} h}}$$
$$\gamma_{21}^{{^{\prime\prime}}} = (S_{31} m{^{\prime}}_{7n} S_{0} - S_{31} m^{\prime}_{7n} nq + S_{33} R^{\prime}_{5n} )e^{{ - iR_{7n}^{^{\prime}} h}} ,\gamma_{22}^{{^{\prime\prime}}} = (S_{31} m_{8n}^{^{\prime}} S_{0} - S_{31} m{^{\prime}}_{8n} nq + S_{33} R{^{\prime}}_{6n} )e^{{ - iR_{8n}^{^{\prime}} h}}$$
$$\gamma_{23}^{^{\prime\prime}} = (C_{13} m_{11n}^{^{\prime}} S_{0} - C_{13} m_{11n}^{^{\prime}} nq - C_{33} R^{\prime}_{11n} - e_{33} \kappa_{5n}^{^{\prime}} R^{\prime}_{11n} )e^{{iR_{11n}^{^{\prime}} h}}$$
$$\gamma_{24}^{^{\prime\prime}} = (C_{13} m_{12n}^{^{\prime}} S_{0} - C_{13} m_{12n}^{^{\prime}} nq - C_{33} R^{\prime}_{12n} - e_{33} \kappa_{6n}^{^{\prime}} R^{\prime}_{12n} )e^{{iR_{12n}^{^{\prime}} h}}$$
$${g}_{5}=i{\xi }_{-n}\left({\kappa }_{5}\frac{{L}_{3}}{{D}_{3}}{e}^{i{R}_{11}h}{R}_{11}+{\kappa }_{6}\frac{{M}_{3}}{{D}_{3}}{e}^{i{R}_{12}h}{R}_{12}\right)$$
$${g}_{6}=i{\xi }_{-n}\left({m}_{4}{e}^{i{R}_{4}h}{R}_{4}+{m}_{7}\frac{{G}_{3}}{{D}_{3}}{e}^{-i{R}_{7}h}{R}_{7}+{m}_{8}\frac{{H}_{3}}{{D}_{3}}{e}^{-i{R}_{8}h}{R}_{8}-{m}_{11}\frac{{L}_{3}}{{D}_{3}}{e}^{i{R}_{11}h}{R}_{11}- {m}_{12}\frac{{M}_{3}}{{D}_{3}}{e}^{i{R}_{12}h}{R}_{12}\right)$$
$${g}_{7}=i{\xi }_{-n}\left[{\beta }_{1}^{^{\prime}}{e}^{i{R}_{4}h}+{\beta }_{2}^{^{\prime}}{e}^{-i{R}_{7}h}\frac{{G}_{3}}{{D}_{3}}+{\beta }_{3}^{^{\prime}}{e}^{-i{R}_{8}h}\frac{{H}_{3}}{{D}_{3}}+{\beta }_{4}^{^{\prime}}{e}^{i{R}_{11}h}\frac{{L}_{3}}{{D}_{3}}+{\beta }_{5}^{^{\prime}}{e}^{i{R}_{12}h}\frac{{M}_{3}}{{D}_{3}}\right]$$
$${\beta }_{1}^{^{\prime}}=-{S}_{55}\left({R}_{4}^{2}{m}_{4}-{R}_{4}{S}_{0}\right)-\left({S}_{31}{-S}_{11}\right){m}_{4}{S}_{0}nq-\left({S}_{33}{-S}_{31}\right){R}_{4}nq$$
$${\beta }_{2}^{^{\prime}}=-{S}_{55}\left({R}_{7}^{2}{m}_{7}+{R}_{7}{S}_{0}\right)-\left({S}_{31}{-S}_{11}\right){m}_{7}{S}_{0}nq-\left({S}_{33}{-S}_{31}\right){R}_{7}nq$$
$${\beta }_{3}^{^{\prime}}=-{S}_{55}\left({R}_{8}^{2}{m}_{8}+{R}_{8}{S}_{0}\right)-\left({S}_{31}{-S}_{11}\right){m}_{8}{S}_{0}nq-\left({S}_{33}{-S}_{31}\right){R}_{8}nq$$
$${\beta }_{4}^{\mathrm{^{\prime}}}={C}_{44}\left({R}_{11}^{2}{m}_{11}-{R}_{11}\right)-{e}_{15}{\kappa }_{5}{S}_{0}{R}_{11}+\left({C}_{31}{-C}_{11}\right){m}_{11}{S}_{0}nq-\left({C}_{33}{-C}_{31}\right){R}_{11}nq-\left({e}_{33}{-e}_{31}\right){R}_{11}nq{\kappa }_{3}^{\mathrm{^{\prime}}},{\beta }_{5}^{\mathrm{^{\prime}}}={C}_{44}\left({R}_{12}^{2}{m}_{12}-{R}_{12}{S}_{0}\right)-{e}_{15}{\kappa }_{6}{S}_{0}{R}_{12}+\left({C}_{31}{-C}_{11}\right){m}_{12}{S}_{0}nq-\left({C}_{33}{-C}_{31}\right){R}_{12}nq-\left({e}_{33}{-e}_{31}\right){R}_{12}nq{\kappa }_{6}$$
$${g}_{8}=i{\xi }_{-n}\left[{\beta }_{6}^{^{\prime}}{e}^{i{R}_{4}h}+{\beta }_{7}^{^{\prime}}{e}^{-i{R}_{7}h}\frac{{G}_{3}}{{D}_{3}}+{\beta }_{8}^{^{\prime}}{e}^{-i{R}_{8}h}\frac{{H}_{3}}{{D}_{3}}+{\beta }_{9}^{^{\prime}}{e}^{i{R}_{11}h}\frac{{L}_{3}}{{D}_{3}}+{\beta }_{10}^{^{\prime}}{e}^{i{R}_{12}h}\frac{{M}_{3}}{{D}_{3}}\right]$$
$${\beta }_{6}^{\mathrm{^{\prime}}}={S}_{31}{m}_{4}{R}_{4}{S}_{0}-{S}_{33}{R}_{4}^{2}+2nq{S}_{55}\left(-{m}_{4}{R}_{4}+{S}_{0}\right), {\beta }_{7}^{\mathrm{^{\prime}}}={-S}_{31}{m}_{7}{R}_{7}{S}_{0}-{S}_{33}{R}_{7}^{2}+2{nqS}_{55}\left({m}_{7}{R}_{7}+{S}_{0}\right),{\beta }_{8}^{\mathrm{^{\prime}}}={-S}_{31}{m}_{8}{R}_{8}{S}_{0}-{S}_{33}{R}_{8}^{2}+2{nqS}_{55}\left({m}_{8}{R}_{8}+{S}_{0}\right)$$
$${\beta }_{9}^{^{\prime}}={-C}_{31}{m}_{11}{R}_{11}{S}_{0}+{C}_{33}{R}_{11}^{2}+{e}_{33}{\kappa }_{5}{R}_{11}^{2}-2nq\left\{{C}_{44}\left(-{R}_{11}{m}_{11}+{S}_{0}\right)+{e}_{15}{\kappa }_{5}{S}_{0})\right\}$$
$${\beta }_{10}^{^{\prime}}={-C}_{31}{m}_{12}{R}_{12}{S}_{0}+{C}_{33}{R}_{12}^{2}+{e}_{33}{\kappa }_{6}{R}_{12}^{2}-2nq\left\{{C}_{44}\left(-{R}_{12}{m}_{12}+{S}_{0}\right)+{e}_{15}{\kappa }_{6}{S}_{0})\right\}$$

Appendix 4: Expressions used for Energy Ratios \((j=\mathrm{1,2},\dots 12)\)

$$E_{i} = \left| {R^{2} } \right|, E_{2} = \left| {T^{2} } \right|\frac{{\rho_{1} c_{t} cos\theta_{j} }}{{\rho_{2} c_{i} cos\theta_{0} }}, E_{3} = \frac{{cos\theta_{j1} }}{{cos\theta_{0} }}\left| {R^{{1^{2} }} } \right|,E_{4} = \frac{{\rho_{1} c_{t} cos\theta_{j1} }}{{\rho_{2} c_{i} cos\theta_{0} }}\left| {T^{{1^{2} }} } \right|, E_{5} = \frac{{cos\theta_{j1} }}{{cos\theta_{0} }}|R^{{1^{{\prime\prime}{2}} }} \left| {, E_{6} = \frac{{\rho_{1} c_{t} cos\theta_{j1} }}{{\rho_{2} c_{i} cos\theta_{0} }}|T^{{1^{{\prime\prime}{2}} }} } \right|$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Srivastava, R. Analysis of Quasi waves in Orthotropic Layer Bonded Between Piezoelectric Half-Spaces with Imperfect and Sliding Interfaces. J. Vib. Eng. Technol. 12, 1577–1602 (2024). https://doi.org/10.1007/s42417-023-00927-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-00927-3

Keywords

Navigation