Skip to main content
Log in

SH-wave propagation in a piezoelectric layer over a heterogeneous dry sandy half-space

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present paper investigates the behavior of SH-wave propagation in a heterogeneous dry sandy half-space bonded by a piezoelectric layer abutting the vacuum. The vacuum is assumed as a layer of air. Solutions for mechanical displacement and electrical potential functions are obtained by solving the coupled field equations of the piezoelectric layer with the help of the separation of variables technique. The rigidity and density of the half-space are assumed to vary exponentially with depth. Suitable boundary conditions are applied to obtain the dispersion equation of the SH-wave for electrically open and short cases. Some special cases of the problem are extracted, and the results obtained match the classical Love wave equation, which validates the authenticity of the considered problem. The effect of physical parameters such as piezoelectric, dielectric constant, inhomogeneity, and sandy parameters on the phase velocity of SH-wave is investigated through numerical calculations and presented graphically. Also, a comparative study has been done to analyze the effect of parameters by considering two piezoelectric materials, PZT-4 and \(\text {BaTiO}_3\). It is observed that the phase velocity increases with the increase of the dielectric constant, inhomogeneity, and sandy parameters, while simultaneously decreasing with the rise of the piezoelectric constant for both piezoelectric materials. This study can be applied to many scientific and engineering disciplines using sensors, actuators, capacitors, and the design of various acoustic surface wave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\((u_1^{(u)},\,v_1^{(u)},\,w_1^{(u)})\) :

Displacement components of the piezoelectric layer

\((u_2^{(l)},\,v_2^{(l)},\,w_2^{(l)})\) :

Displacement components of the half-space

\(\sigma _{pq}^{(u)}\), \(S_{rt}^{(u)}\) :

Stress and strain tensors of the layer

\(\psi _1^{(u)}\) :

Electrical potential function of the layer

\(E_r^{(u)}\), \(D_q^{(u)}\) :

Electrical potential field and electrical displacement of the layer

\(c_{pqrt}^{(u)}\), \(e_{qrt}^{(u)}\), \(\varepsilon _{qr}^{(u)}\) :

Elastic, piezoelectric, and dielectric coefficients of the layer

\(\rho _1^{(u)}\), \(\rho _2^{(l)}\) :

Densities of the layer and half-space

\({\nabla ^2}\) :

Laplacian operator in two dimensional

\(c_{44}^{(u)}\), \(\varepsilon _{11}^{(u)}\), \(e_{15}^{(u)}\) :

Elastic, dielectric and piezoelectric constants of the layer

\(\phi ^0\), \(\varepsilon ^0\), \(D_q^{0}\) :

Electrical potential function, dielectric constant, and electric displacement in the vacuum

\({\eta }\), \(\rho _2^{(l)}\), \({\mu _2^{(l)}}\) :

Sandy parameter, density, and rigidity of the half-space

\({\mu _2}\), \({\rho _2}\) :

The initial values of \({\mu _2^{(l)}}\) and \(\rho _2^{(l)}\) at \(x_3=0\)

\(\alpha \) :

The inhomogeneity parameter of the half-space has dimensions that are the inverse of length.

k, c :

Wave number and common wave velocity

H :

Thickness of the layer

\(c_0\) :

Bulk shear-wave velocity of the layer

References

  1. Biot, M.A.: Mechanics of incremental deformations, (1965)

  2. Agustin, U.: Principles of seismology, (1999)

  3. Gubbins, D.: Seismology and plate tectonics, Cambridge University Press, (1990)

  4. Love, A.: Mathematical Theory of Elasticity. Cambridge Univ, Press (1920)

    MATH  Google Scholar 

  5. Bullen, K.E.: An Introduction to the Theory of Seismology. Cambridge University Press, Cambridge (1963)

    MATH  Google Scholar 

  6. Jin, F., Wang, Z.K., Wang, T.J.: The propagation behavior of Love waves in a pre-stressed piezoelectric layered structure. Key Eng. Mater. 183, 755–760 (2000)

    Article  Google Scholar 

  7. Wang, Q.: Wave propagation in a piezoelectric coupled solid medium. J. Appl. Mech. 69, 819–824 (2002)

    Article  MATH  Google Scholar 

  8. Nie, G., An, Z., Liu, J.: SH-guided waves in layered piezoelectric/piezomagnetic plates. Prog. Nat. Sci. 19, 811–816 (2009)

    Article  Google Scholar 

  9. Cui, J., Du, J., Wang, J.: Study on SH-waves in piezoelectric structure with an imperfectly bonded viscoelastic layer (2013) 1017–1020

  10. Manna, S., Kundu, S., Gupta, S.: Love wave propagation in a piezoelectric layer overlying in an inhomogeneous elastic half-space. J. Vib. Control 21, 2553–2568 (2015)

    Article  MathSciNet  Google Scholar 

  11. Pang, Y., Feng, W., Liu, J., Zhang, C.: SH wave propagation in a piezoelectric/piezomagnetic plate with an imperfect magnetoelectroelastic interface. Waves Random Complex Media 29, 580–594 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sharma, V., Kumar, S.: Comparative study of micro-scale size effects on mechanical coupling factors and SH-wave propagation in functionally graded piezoelectric/piezomagnetic structures. Waves Random Complex Media 32, 2332–2367 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates. Acta Mech. 228, 1071–1081 (2017)

    Article  Google Scholar 

  14. Zagrouba, M., Bouhdima, M.S.: Investigation of SH wave propagation in piezoelectric plates. Acta Mech. 232, 3363–3379 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chaudhary, S., Sahu, S.A., Singhal, A.: Analytic model for Rayleigh wave propagation in piezoelectric layer overlaid orthotropic substratum. Acta Mech. 228, 495–529 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vashishth, A.K., Bareja, U.: Gradation and porosity’s effect on Love waves in a composite structure of piezoelectric layers and functionally graded porous piezoelectric material, Eur. J. Mech.-A/Solids (2023) 104908

  17. Hemalatha, K., Kumar, S., Prakash, D.: Dispersion of Rayleigh wave in a functionally graded piezoelectric layer over elastic substrate, Forces Mech. (2023) 100171

  18. Parvez, A., Kuvar, S., Irfan, A. et al.: Attenuation and dispersion phenomena of torsional waves in self-weighted, inhomogeneous, pre-stressed poro-elastic and poro-viscoelastic stratified structure, Waves Random Complex Media (2020) 1–22

  19. Alam, P., Singh, K.S., Ali, R., Badruddin, I.A., khan, T.Y., Kamangar, S.: Dispersion and attenuation of SH-waves in a temperature-dependent Voigt-type viscoelastic strip over an inhomogeneous half-space, ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 101: e202000223 (2021)

  20. Dey, S., Gupta, A., Gupta, S., Prasad, A.: Torsional surface waves in nonhomogeneous anisotropic medium under initial stress. J. Eng. Mech. 126, 1120–1123 (2000)

    Article  Google Scholar 

  21. Kumhar, R., Kundu, S., Maity, M., Gupta, S.: Study of Love-type wave vibrations in double sandy layers on half-space of viscoelastic: an analytical approach. Multidiscip. Model. Mater. Struct. 16, 731–748 (2019)

    Article  Google Scholar 

  22. Weiskopf, W.H.: Stresses in soils under a foundation. J. Franklin Inst. 239, 445–465 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gupta, S., Ahmed, M.: On propagation of Love waves in dry sandy medium sandwiched between fiber-reinforced layer and prestressed porous half-space. Earthq. Struct. 12, 619–628 (2017)

    Google Scholar 

  24. Alam, P., Kundu, S., Gupta, S., Saha, A.: Study of torsional wave in a poroelastic medium sandwiched between a layer and a half-space of heterogeneous dry sandy media. Waves Random Complex Media 28, 182–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gupta, S., Ahmed, M., Manna, S.: Analysis of G-type seismic waves in dry sandy layer overlying an inhomogeneous half-space. Procedia Eng. 144, 1340–1347 (2016)

    Article  Google Scholar 

  26. Tomar, S., Kaur, J.: SH-waves at a corrugated interface between a dry sandy half-space and an anisotropic elastic half-space. Acta Mech. 190, 1–28 (2007)

    Article  MATH  Google Scholar 

  27. Chattopadhyay, A., Sharnma, R.: SH-waves in a dry sandy layer. Gerlands Beiträge Zur Geophysik 91, 355–360 (1982)

    Google Scholar 

  28. Alam, P., Kundu, S., Gupta, S.: Dispersion and attenuation of torsional wave in a viscoelastic layer bonded between a layer and a half-space of dry sandy media. Appl. Math. Mech. 38, 1313–1328 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, J., Wang, Y., Wang, B.: Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1875–1879 (2010)

    Article  Google Scholar 

  30. Wang, H., Zhao, Z.: Love waves in a two-layered piezoelectric/elastic composite plate with an imperfect interface. Arch. Appl. Mech. 83, 43–51 (2013)

    Article  MATH  Google Scholar 

  31. Goyal, R., Kumar, S., Sharma, V.: A size-dependent micropolar-piezoelectric layered structure for the analysis of Love wave. Waves Random Complex Media 30, 544–561 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Qian, Z., Jin, F., Wang, Z., Kishimoto, K.: Love waves propagation in a piezoelectric layered structure with initial stresses. Acta Mech. 171, 41–57 (2004)

    Article  MATH  Google Scholar 

  33. Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. Ultrasonics 69, 83–89 (2016)

    Article  Google Scholar 

  34. Bleustein, J.L.: A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13, 412–413 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Indian Institute of Technology (ISM) for providing all the research facilities.

Funding

The author expresses their gratitude to the Government of India’s University Grants Commission (UGC) for awarding Mr. MOHD SADAB the UGC-JRF award Ref. No. JUN20C05768.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Sadab.

Ethics declarations

Conflict of interest

The Authors declare that there is no conflict of interest.

Data availibility statement

All data, models, or codes generated or analyzed during this study are included in this published article and are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadab, M., Kundu, S. SH-wave propagation in a piezoelectric layer over a heterogeneous dry sandy half-space. Acta Mech 234, 5841–5854 (2023). https://doi.org/10.1007/s00707-023-03708-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03708-x

Navigation