Skip to main content
Log in

The Role of Transient Vibration and Skull Properties on Concussion: A Computational Analysis

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Introduction

Concussion is commonly described as a disruption of brain function usually produced by a direct or indirect impact to the head and is generated by linear and rotational acceleration. Skull resonant frequencies of around 450 Hz (the maximum mechanical impedance of brain tissue) may also play a part in concussion through the propagation of vibration into the brain.

Objectives

The overall goal of this work is to gain a better understanding of the role of transient vibration of the skull on concussions.

Methods

A natural frequency investigation was conducted to develop a simplified material map (single layer) based on a three-layer skull material model. The identified material properties were then applied to 45 skull CT scans and modal analysis was conducted to determine their natural frequencies. The relationship between different densities and Young’s Modulus versus natural frequencies were tested. Skull thickness was also analyzed, and shape analysis was conducted using principal component analysis, independent component analysis, and k-means.

Results

A direct correlation between density, Young’s Modulus, and thickness with variations in natural frequency behavior was found. No correlation was found between the shape of the skull and natural frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The dataset used in this study, is openly available at: CQ500 http://headctstudy.qure.ai/dataset.

Abbreviations

CT:

Computerized tomography

DAI:

Diffuse axonal injury

FE:

Finite element

GPa:

Gigapascal

ICA:

Independent component analysis

ICs:

Independent components

PCA:

Principal component analysis

PCs:

Principal components

STL:

Standard tessellation language

TBI:

Traumatic brain injury

References

  1. Tator CH (2013) Concussions and their consequences: current diagnosis, management and prevention. Can Med Assoc J 185(11):975–979. https://doi.org/10.1503/cmaj.120039

    Article  Google Scholar 

  2. Mullally WJ (2017) Concussion. Am J Med 130(8):885–892. https://doi.org/10.1016/j.amjmed.2017.04.016

    Article  Google Scholar 

  3. Meaney DF, Smith DH (2011) Biomechanics of concussion. Clin Sports Med 30(1):19–31. https://doi.org/10.1016/j.csm.2010.08.009

    Article  Google Scholar 

  4. Churchill NW, Hutchison MG, Graham SJ et al (2020) Baseline vs. cross-sectional MRI of concussion: distinct brain patterns in white matter and cerebral blood flow. Sci Rep 10:1643. https://doi.org/10.1038/s41598-020-58073-9

    Article  Google Scholar 

  5. Anderson ED, Giudice JS, Wu T, Panzer MB, Meaney DF (2020) Predicting concussion outcome by integrating finite element modeling and network analysis. Front Bioeng Biotechnol 8:309. https://doi.org/10.3389/fbioe.2020.00309

    Article  Google Scholar 

  6. Luo Y, Li Z, Chen H (2012) Finite-element study of cerebrospinal fluid in mitigating closed head injuries. Proc Inst Mech Eng [H] 226(7):499–509. https://doi.org/10.1177/0954411912445729

    Article  Google Scholar 

  7. Iverson GL, Lange RT (2011) Mild traumatic brain injury. In: Schoenberg M, Scott J (eds) The little black book of neuropsychology. Springer, Boston. https://doi.org/10.1007/978-0-387-76978-3_22

    Chapter  Google Scholar 

  8. Vieira RCA, Paiva WS, de Oliveira DV, Teixeira MJ, de Andrade AF, Sousa RMC (2016) Diffuse axonal injury: epidemiology, outcome and associated risk factors. Front Neurol 7:178. https://doi.org/10.3389/fneur.2016.00178

    Article  Google Scholar 

  9. Laksari K, Kurt M, Babaee H, Kleiven S, Camarillo D (2018) Mechanistic insights into human brain impact dynamics through modal analysis. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.120.138101

    Article  Google Scholar 

  10. Khalil TB, Viano DC, Smith DL (1979) Experimental analysis of the vibrational characteristics of the human skull. J Sound Vib 63(3):351–376. https://doi.org/10.1016/0022-460X(79)90679-5

    Article  Google Scholar 

  11. Håkansson B, Brandt A, Carlsson P (1994) Resonance frequencies of the human skull in vivo. JAcoust Soc Am 95:1474–1481. https://doi.org/10.1121/1.408535

    Article  Google Scholar 

  12. Charalambopoulos A, Fotiadis DI, Massalas CV (1998) Free vibrations of the viscoelastic human skull. Int J Eng Sci. https://doi.org/10.1016/S0020-7225(97)00087-6

    Article  MATH  Google Scholar 

  13. Baroudi AE, Razafimahery F, Rakotomanana-Ravelonarivo L (2012) Study of a spherical head model. Analytical and numerical solutions in fluid–structure interaction approach. Int J Eng Sci 51:1–13. https://doi.org/10.1016/j.ijengsci.2011.11.007

    Article  MathSciNet  MATH  Google Scholar 

  14. Baroudi AE, Razafimahery F, Rakotomanana-Ravelonarivo L (2012) Three-dimensional modal analysis of an idealized human head including fluid–structure interaction effects. Acta Mech 223:1899–1915. https://doi.org/10.1007/s00707-012-0681-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Blandford C, Neuert M, Jenkyn TR (2017) The dynamic properties of the human skull: the effect of impact location and impact energy on the vibrational response of the head. In: 2017 CMBEC40 conference, Winnipeg MB, May 23–26, 2017

  16. Feng Y et al (2013) Viscoelastic properties of the ferret brain measured in vivo at multiple frequencies by magnetic resonance elastography. J Biomech 46(5):863–870. https://doi.org/10.1016/j.jbiomech.2012.12.024

    Article  Google Scholar 

  17. Chakroun M, Ghozlen H, Elloumi I, Nicolle S (2009) Détermination du module d’élasticité de la matière cérébrale. C R Phys 10(2–3):236–241. https://doi.org/10.1016/j.crhy.2009.03.010

    Article  Google Scholar 

  18. Chakroun M, Ghozlen H (2012) Mechanical impedance of cerebral material. J Mod Phys 3(3):271–273. https://doi.org/10.4236/jmp.2012.33037

    Article  Google Scholar 

  19. Moss WC, King MJ, Blackman EG (2009) Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys Rev Lett 103:108702. arXiv:0809.3468v4

  20. Ganpule S, Alai A, Plougonven E, Chandra N (2013) Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. Biomech Model Mechanobiol 12:511–531. https://doi.org/10.1007/s10237-012-0421-8

    Article  Google Scholar 

  21. Martin GT (2016) Acute brain trauma. Ann R Coll Surg Engl 98:6–10. https://doi.org/10.1308/rcsann.2016.0003

    Article  Google Scholar 

  22. Eslaminejad A, Hosseini-Farid M, Ziejewski M, Karami G (2020) Constitutive properties determination of human cranium by an experimental–computational modal analysis. ASME J Vib Acoust. https://doi.org/10.1115/1.4045216

    Article  Google Scholar 

  23. Eslaminejad A, Hosseini-Farid M, Ramzanpour M, Ziejewski M, Karami G (2018) Determination of mechanical properties of human skull with modal analysis. In: Proceedings of the ASME 2018 international mechanical engineering congress and exposition, 3: biomedical and biotechnology engineering. Pittsburgh, Pennsylvania, USA. November 9–15, 2018. https://doi.org/10.1115/IMECE2018-88103

  24. Cao LB, Yang B, Tang Y, Sun N, Tse K-M, Lee H-P (2018) Modal and dynamic responses of the human head-neck complex for impact applications. J Vibroeng 18(7):4743–4755. https://doi.org/10.21595/jve.2016.17457

    Article  Google Scholar 

  25. Yang B, Shi Z, Wang Q et al (2018) Frequency spectrum of the human head–neck to mechanical vibrations. J Low Freq Noise Vib Act Control 37(3):611–618. https://doi.org/10.1177/1461348417747179

    Article  Google Scholar 

  26. Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392:2388–2396. https://doi.org/10.1016/S0140-6736(18)31645-3

    Article  Google Scholar 

  27. Ravenel JG, Leue WM, Nietert PJ, Miller JV, Taylor KK, Silvestri GA (2008) Pulmonary nodule volume: effects of reconstruction parameters on automated measurements—a phantom study. Radiology 247(2):400–408. https://doi.org/10.1148/radiol.2472070868

    Article  Google Scholar 

  28. Joo I, Kim SH, Lee JY, Lee JM, Han JK, Choi BI (2011) Comparison of semiautomated and manual measurements for simulated hypo- and hyper-attenuating hepatic tumors on MDCT: effect of slice thickness and reconstruction increment on their accuracy. Acad Radiol 18(5):626–633. https://doi.org/10.1016/j.acra.2010.12.013 (Epub 2011 Mar 9)

    Article  Google Scholar 

  29. Whyms BJ, Vorperian HK, Gentry LR, Schimek EM, Bersu ET, Chung MK (2013) The effect of computed tomographic scanner parameters and 3-dimensional volume rendering techniques on the accuracy of linear, angular, and volumetric measurements of the mandible. Oral Surg Oral Med Oral Pathol Oral Radiol 115(5):682–691. https://doi.org/10.1016/j.oooo.2013.02.008

    Article  Google Scholar 

  30. Patil S, Ravi B (2005) Voxel-based representation, display and thickness analysis of intricate shapes. In: Proceedings of the ninth international conference on computer aided design and computer graphics (CAD-CG’05), Hong Kong, China, 7–10 December 2005, p. 6. https://doi.org/10.1109/CAD-CG.2005.86

  31. Motherway JA, Verschueren P, Van der Perre G, Vander Sloten J, Gilchrist MD (2009) The mechanical properties of cranial bone: the effect of loading rate and cranial sampling position. J Biomech 42(13):2129–2135. https://doi.org/10.1016/j.jbiomech.2009.05.030

    Article  Google Scholar 

  32. Delille R, Lesueur D, Potier P, Drazetic P, Markiewicz E (2007) Experimental study of the bone behaviour of the human skull bone for the development of a physical head model. Int J Crashworth 12(2):101–108. https://doi.org/10.1080/13588260701433081

    Article  Google Scholar 

  33. Cai Z, Xia Y, Bao Z, Mao H (2019) Creating a human head finite element model using a multi-block approach for predicting skull response and brain pressure. Comput Methods Biomech Biomed Engin 22(2):169–179. https://doi.org/10.1080/10255842.2018.1541983

    Article  Google Scholar 

  34. Chang Y, Kim N, Stenfelt S (2016) The development of a whole-head human finite-element model for simulation of the transmission of bone-conducted sound. J Acoust Soc Am 140:1635. https://doi.org/10.1121/1.4962443

    Article  Google Scholar 

  35. Fry F, Barger J (1978) Acoustical properties of the human skull. J Acoust Soc Am 63(5):1576–1590. https://doi.org/10.1121/1.381852

    Article  Google Scholar 

  36. Peterson J, Dechow PC (2003) Material properties of the human cranial vault and zygoma. Anatom Rec Pt A Disc Mol Cell Evolut Biol 274(1):785–797. https://doi.org/10.1002/ar.a.10096

    Article  Google Scholar 

  37. Jaasma MJ, Bayraktar HH, Niebur GL, Keaveny TM (2002) Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone. J Biomech 35(2):237–246. https://doi.org/10.1016/s0021-9290(01)00193-2

    Article  Google Scholar 

  38. Kleiven S, Hardy WN (2002) Correlation of an FE model of the human head with local brain motion–consequences for injury prediction. Stapp Car Crash J 46:123–144

    Google Scholar 

  39. Luo Y, Li Z, Chen H (2012) Finite-element study of cerebrospinal fluid in mitigating closed head injuries. Proc Inst Mech Eng Part H J Eng Med 226(7):499–509. https://doi.org/10.1177/0954411912445729

    Article  Google Scholar 

  40. Sahoo D, Deck C, Yoganandan N, Willinger R (2013) Anisotropic composite human skull model and skull fracture validation against temporo-parietal skull fracture. J Mech Behav Biomed Mater 28:340–353. https://doi.org/10.1016/j.jmbbm.2013.08.010

    Article  Google Scholar 

  41. Khalil TB, Hubbard RP (1977) Parametric study of head response by finite element modelling. J Biomech 10(2):119–132. https://doi.org/10.1016/0021-9290(77)90075-6

    Article  Google Scholar 

  42. Ruan JS, Khalil TB, King AI (1994) Dynamic response of the human head to impact by three-dimensional finite element analysis. J Biomech Eng 116(1):44–50. https://doi.org/10.1115/1.2895703

    Article  Google Scholar 

  43. Hardy CH, Marcal PV (1973) Elastic analysis of a skull. ASME Trans 40(4):838–842. https://doi.org/10.1115/1.3423172

    Article  Google Scholar 

  44. Li J et al (2020) Experimental and numerical studies on vibration modes and transcranial attenuation characteristics in unilateral bone conduction hearing. Shock Vib. https://doi.org/10.1155/2020/4962098

    Article  Google Scholar 

  45. Tse KM, Lim SP, Tan VBC, Lee HP (2014) A review of head injury and finite element head models. Am J Eng Technol Soc 1(5):28–52

    Google Scholar 

  46. Zhu Z, Wu C, Zhang W (2014) Frequency analysis and anti-shock mechanism of woodpecker’s head structure. J Bionic Eng 11:282–287. https://doi.org/10.1016/S1672-6529(14)60045-7

    Article  Google Scholar 

  47. Willing R, Roumeliotis G, Jenkyn T, Yazdani A (2013) Development and evaluation of a semi-automatic technique for determining the bilateral symmetry plane of the facial skeleton. Med Eng Phys 35:1843–1849. https://doi.org/10.1016/j.ijom.2006.01.028

    Article  Google Scholar 

  48. Roumeliotis G, Willing R, Neuert M, Ahluwali R, Jenkyn T, Yazdani A (2015) Application of a novel semi-automatic technique for determining the bilateral symmetry plane of the facial skeleton of normal adult males. J Craniofac Surg 26:1997–2001. https://doi.org/10.1016/j.medengphy.2013.06.006

    Article  Google Scholar 

  49. da Silva RDC, Jenkyn TR, Carranza VA (2020) Application of a novel automatic method for determining the bilateral symmetry midline of the facial skeleton based on invariant moments. Symmetry 12:1448. https://doi.org/10.3390/sym12091448

    Article  Google Scholar 

  50. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci 2:559–572. https://doi.org/10.1080/14786440109462720

    Article  MATH  Google Scholar 

  51. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441. https://doi.org/10.1037/h0071325

    Article  MATH  Google Scholar 

  52. Feng Y et al (2021) Statistical shape modelling to analyse the talus in paediatric clubfoot. Proc Inst Mech Eng [H] 235(8):849–860. https://doi.org/10.1177/09544119211012115

    Article  Google Scholar 

  53. Mei L, Figl M, Darzi A, Rueckert D, Edwards P, Sample sufficiency and PCA dimension for statistical shape models. In: Forsyth D, Torr P, Zisserman A (eds) Computer vision—ECCV 2008. ECCV 2008. Lecture notes in computer science, 5305. https://doi.org/10.1007/978-3-540-88693-8_36

  54. Fuessinger MA, Schwarz S, Cornelius CP et al (2018) Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics. Int J CARS 13:519–529. https://doi.org/10.1007/s11548-017-1674-6

    Article  Google Scholar 

  55. Pishchulin L et al (2017) Building statistical shape spaces for 3D human modeling. Pattern Recogn 67:276–286. https://doi.org/10.1016/j.patcog.2017.02.018

    Article  Google Scholar 

  56. Quintens L, Herteleer M, Vancleef S et al (2019) Anatomical variation of the Tibia—a principal component analysis. Sci Rep 9:7649. https://doi.org/10.1038/s41598-019-44092-8

    Article  Google Scholar 

  57. Jolliffe I (2002) Principal component analysis, 2nd edn. Springer, New York

    MATH  Google Scholar 

  58. Audenaert EA, Pattyn C, Steenackers G, De Roeck J, Vandermeulen D, Claes P (2019) Statistical shape modeling of skeletal anatomy for sex discrimination: their training size, sexual dimorphism, and asymmetry. Front Bioeng Biotechnol 7:302. https://doi.org/10.3389/fbioe.2019.00302

    Article  Google Scholar 

  59. Jutten C, Herault J (1991) Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process 24(1):1–10. https://doi.org/10.1016/0165-1684(91)90079-X

    Article  MATH  Google Scholar 

  60. Wu J et al (2014) An implementation of independent component analysis for 3D statistical shape analysis. Biomed Signal Process Control 13:345–356. https://doi.org/10.1016/j.bspc.2014.06.003

    Article  Google Scholar 

  61. Uzumcu M, Frangi AF, Reiber JHC, Lelieveldt BPF (2003) Independent component analysis in statistical shape models. In: Proc. SPIE 5032, Medical Imaging 2003: image processing. https://doi.org/10.1117/12.481310

  62. Hyvarinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, Hoboken

    Book  Google Scholar 

  63. Maaten LVD, Hinton GE (2008) Visualizing data using t-SNE. J Mach Learn Res 9(86):2579–2605

    MATH  Google Scholar 

  64. Hinton GE, Roweis S (2003) Stochastic neighbor embedding, advances in neural information processing systems, 15

  65. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley symposium on mathematical statistics and probability, Oakland, CA, USA, 1 January 1967; pp 281–297

  66. Ahmar AS et al (2018) Using K-means clustering to cluster provinces in Indonesia. J Phys Conf Ser 1028:012006. https://doi.org/10.1088/1742-6596/1028/1/012006

    Article  Google Scholar 

  67. Li Y, Wu H (2012) A clustering method based on K-means algorithm. Phys Procedia 25:1104–1109. https://doi.org/10.1016/j.phpro.2012.03.206

    Article  Google Scholar 

  68. Bugli C, Lambert P (2007) Comparison between principal component analysis and independent component analysis in electroencephalograms modelling. Biom J 49:312–327. https://doi.org/10.1002/bimj.200510285

    Article  MathSciNet  MATH  Google Scholar 

  69. Husnain M, Missen MMS, Mumtaz S, Luqman MM, Coustaty M, Ogier J-M (2019) Visualization of high-dimensional data by pairwise fusion matrices using t-SNE. Symmetry 11(1):107. https://doi.org/10.3390/sym11010107

    Article  Google Scholar 

  70. Namkeun K, You C, Stefan S (2014) A three-dimensional finite-element model of a human dry skull for bone-conduction hearing. BioMed Res Int 2014:9. https://doi.org/10.1155/2014/519429

    Article  Google Scholar 

  71. Franke EK (1956) Response of the human skull to mechanical vibrations. J Acoust Soc Am 28(6):1277–1284. https://doi.org/10.1121/1.1908622

    Article  Google Scholar 

Download references

Acknowledgements

Data were provided by the qure.ai CQ500 dataset.

Funding

No external funding was used for this study.

Author information

Authors and Affiliations

Authors

Contributions

RDCS: conceptualization, methodology, software, writing. TRJ: project administration. VAC: review and editing.

Corresponding author

Correspondence to Rodrigo Dalvit Carvalho da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human statement

This study does not contain any experiment with human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalvit Carvalho da Silva, R., Jenkyn, T.R. & Carranza, V.A. The Role of Transient Vibration and Skull Properties on Concussion: A Computational Analysis. J. Vib. Eng. Technol. 11, 1807–1819 (2023). https://doi.org/10.1007/s42417-022-00672-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00672-z

Keywords

Navigation