Skip to main content

Advertisement

Log in

Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is to understand the mechanics of blast wave–head interactions as the blast wave traverses the head/brain continuum. Toward this goal, surrogate head model is subjected to well-controlled blast wave profile in the shock tube environment, and the results are analyzed using combined experimental and numerical approaches. The validated numerical models are then used to investigate the spatiotemporal distribution of stresses and pressure in the human skull and brain. By detailing the results from a series of careful experiments and numerical simulations, this paper demonstrates that: (1) Geometry of the head governs the flow dynamics around the head which in turn determines the net mechanical load on the head. (2) Biomechanical loading of the brain is governed by direct wave transmission, structural deformations, and wave reflections from tissue–material interfaces. (3) Deformation and stress analysis of the skull and brain show that skull flexure and tissue cavitation are possible mechanisms of blast-induced traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J (2001) Fundamentals of aerodynamics. McGraw-Hill, New York

    Google Scholar 

  • Baker TJ (2005) Mesh generation: art or science. Prog Aerosp Sci 41(1): 29–63. doi:10.1016/j.paerosci.2005.02.002

    Article  Google Scholar 

  • Bauman RA, Ling G, Tong L, Januszkiewicz A, Agoston D, Delanerolle N, Kim Y, Ritzel D, Bell R, Ecklund J, Armonda R, Bandak F, Parks S (2009) An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. J Neurotrauma 26(6): 841–860. doi:10.1089/neu.2008.0898

    Article  Google Scholar 

  • Belingardi G, Chiandussi G, Gaviglio I (2005) Development and validation of a new finite element model of human head. In: 19th International technical conference on the enhanced safety of vehicles, Washington, DC

  • Bhattacharjee Y (2008) Neuroscience—shell shock revisited: solving the puzzle of blast trauma. Science 319(5862): 406–408. doi:10.1126/science.319.5862.406

    Article  Google Scholar 

  • Bolander R, Mathie B, Bir C, Ritzel D, Vandevord P (2011) Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann Biomed Eng 39(10): 2550–2559. doi:10.1007/s10439-011-0343-0

    Article  Google Scholar 

  • Bourdin X, Beillas P, Petit P, Troseille X (2007) Comparison of tetrahedral and hexahedral meshes for human finite element modelling: an application to kidney impact. In: 20th Enhanced safety of vehicles conference: innovations for safety: opportunities and challenges

  • Cernak I (2005a) Animal models of head trauma. NeuroRX 2(3): 410–422. doi:10.1602/neurorx.2.3.410

    Article  Google Scholar 

  • Cernak I (2005b) Penetrating and blast injury. Restor Neurol Neurosci 23(3): 139–143

    Google Scholar 

  • Cernak I, Wang ZG, Jiang JX, Bian XW, Savic J (2001) Ultrastructural and functional characteristics of blast injury-induced neurotrauma. J Trauma-Injury Infect Crit Care 50(4): 695–706. doi:10.1097/00005373-200104000-00017

    Article  Google Scholar 

  • Chafi M, Karami G, Ziejewski M (2010) Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann Biomed Eng 38(2): 490–504. doi:10.1007/s10439-009-9813-z

    Article  Google Scholar 

  • Chandra N, Holmberg A, Feng R (2011) Controlling the shape of the shock wave profile in a blast facility, U.S. Provisional patent application no. 61542354

  • Chatelin S, Constantinesco A, Willinger R (2010) Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47(5–6): 255–276. doi:10.3233/bir-2010-0576

    Google Scholar 

  • Chavko M, Koller WA, Prusaczyk WK, McCarron RM (2007) Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain. J Neurosci Methods 159(2): 277–281. doi:10.1016/j.jneumeth.2006.07.018

    Article  Google Scholar 

  • Chavko M, Watanabe T, Adeeb S, Lankasky J, Ahlers ST, McCarron RM (2010) Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J Neurosci Methods 195(1): 61–66. doi:10.1016/j.jneumeth.2010.11.019

    Article  Google Scholar 

  • Chen Y, Ostoja-Starzewski M (2010) MRI-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mech 213(1–2): 155–167. doi:10.1007/s00707-009-0274-0

    Article  MATH  Google Scholar 

  • Cifuentes AO, Kalbag A (1992) A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elem Anal Des 12(3–4): 313–318. doi:10.1016/0168-874x(92)90040-j

    Article  Google Scholar 

  • Claessens M, Sauren F, Wismans J (1997) Modeling of the human head under impact conditions: a parametric study. In: Proceedings of 41st stapp car crash conference, pp 315–328

  • Courtney AC, Courtney MW (2009) A thoracic mechanism of mild traumatic brain injury due to blast pressure waves. Med Hypotheses 72(1): 76–83. doi:10.1016/j.mehy.2008.08.015

    Article  MathSciNet  Google Scholar 

  • DePalma RG, Burris DG, Champion HR, Hodgson MJ (2005) Blast injuries. N Engl J Med 352(13): 1335–1342. doi:10.1056/NEJMra042083

    Article  Google Scholar 

  • Desmoulin GT, Dionne JP (2009) Blast-induced neurotrauma: surrogate use, loading mechanisms, and cellular responses. J Trauma-Injury Infect Crit Care 67(5): 1113–1122. doi:10.1097/TA.0b013e3181bb8e84

    Article  Google Scholar 

  • Dogan A, Rao AM, Baskaya MK, Hatcher J, Temiz C, Rao VLR, Dempsey RJ (1999) Contribution of polyamine oxidase to brain injury after trauma. J Neurosurg 90(6): 1078–1082. doi:10.3171/jns.1999.90.6.1078

    Article  Google Scholar 

  • El Sayed T, Mota A, Fraternali F, Ortiz M (2008) Biomechanics of traumatic brain injury. Comput Methods Appl Mech Eng 197(51–52): 4692–4701. doi:10.1016/j.cma.2008.06.006

    Article  MATH  Google Scholar 

  • Elder GA, Cristian A (2009) Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care. Mount Sinai J Med 76(2): 111–118. doi:10.1002/msj.20098

    Article  Google Scholar 

  • Ganpule S, Gu L, Alai A, Chandra N (2011) Role of helmet in the mechanics of shock wave propagation under blast loading conditions. Comput Methods Biomech Biomed Eng 1–12. doi:10.1080/10255842.2011.597353

  • Grujicic M, Bell W, Pandurangan B, Glomski P (2011) Fluid/structure interaction computational investigation of blast-wave mitigation efficacy of the advanced combat helmet. J Mater Eng Perform 20(6): 877–893. doi:10.1007/s11665-010-9724-z

    Article  Google Scholar 

  • Honma H, Ishihara M, Yoshimura T, Maeno K, Morioka T (2003) Interferometric CT measurement of three-dimensional flow phenomena on shock waves and vortices discharged from open ends. Shock Waves 13(3): 179–190. doi:10.1007/s00493-003-0206-1

    Article  Google Scholar 

  • Horgan TJ, Gilchrist MD (2003) The creation of three-dimensional finite element models for simulating head impact biomechanics. Int J Crashworthiness 8(4): 353–366. doi:10.1533/ijcr.2003.0243

    Article  Google Scholar 

  • Jiang Z, Wang C, Miura Y, Takayama K (2003) Three-dimensional propagation of the transmitted shock wave in a square cross-sectional chamber. Shock Waves 13(2): 103–111. doi:10.1007/s00193-003-0197-y

    Article  MATH  Google Scholar 

  • Kashimura H, Yasunobu T, Nakayama H, Setoguchi T, Matsuo K (2000) Discharge of a shock wave from an open end of a tube. J Thermal Sci 9(1): 30–36. doi:10.1007/s11630-000-0042-x

    Article  Google Scholar 

  • Kennedy EA (2007) The development and validation of a biofidelic synthetic eye for the facial and ocular countermeasure safety (FOCUS) headform. PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg

  • Khalil TB, Viano DC (1982) Critical issues in finite element modeling of head impact. In: Proceedings of 26th stapp car crash conference, SAE Paper No 821150

  • Kleinschmit NN (2011) A shock tube technique for blast wave simulation and studies of flow structure interactions in shock tube blast experiments. Master’s thesis, University of Nebraska–Lincoln, Lincoln

  • Kleiven S, von Holst H (2002) Consequences of head size following trauma to the human head. J Biomech 35(2): 153–160. doi:10.1016/s0021-9290(01)00202-0

    Article  Google Scholar 

  • Krave U, Höjer S, Hansson H-A (2005) Transient, powerful pressures are generated in the brain by a rotational acceleration impulse to the head. Eur J Neurosci 21(10): 2876–2882. doi:10.1111/j.1460-9568.2005.04115.x

    Article  Google Scholar 

  • Leonardi AD, Bir CA, Ritzel DV, VandeVord PJ (2011) Intracranial pressure increases during exposure to a shock wave. J Neurotrauma 28(1): 85–94. doi:10.1089/neu.2010.1324

    Article  Google Scholar 

  • Ling G, Bandak F, Armonda R, Grant G, Ecklund J (2009) Explosive blast neurotrauma. J Neurotrauma 26(6): 815–825. doi:10.1089/neu.2007.0484

    Article  Google Scholar 

  • Lubock P, Goldsmith W (1980) Experimental cavitation studies in a model head–neck system. J Biomech 13(12): 1041–1052. doi:10.1016/0021-9290(80)90048-2

    Article  Google Scholar 

  • Marklund N, Clausen F, Lewen A, Hovda DA, Olsson Y, Hillered L (2001) Alpha-Phenyl-tert-N-butyl nitrone (PBN) improves functional and morphological outcome after cortical contusion injury in the rat. Acta Neurochirurgica 143(1): 73–81. doi:10.1007/s007010170141

    Article  Google Scholar 

  • McElhaney J, Melvin JW, Roberts VL, Portnoy HD (1973) Dynamic characteristics of the tissues of the head. In: Kenedi RM (ed) Perspectives in biomedical engineering. Macmillian Press Ltd, London, pp 215–222

  • Moore DF, Radovitzky RA, Shupenko L, Klinoff A, Jaffee MS, Rosen JM (2008) Blast physics and central nervous system injury. Future Neurol 3(3): 243–250. doi:10.2217/14796708.3.3.243

    Article  Google Scholar 

  • Moore DF, Jerusalem A, Nyein M, Noels L, Jaffee MS, Radovitzky RA (2009) Computational biology—modeling of primary blast effects on the central nervous system. Neuroimage 47: T10–T20. doi:10.1016/j.neuroimage.2009.02.019

    Article  Google Scholar 

  • Moss WC, King MJ, Blackman EG (2009) Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys Rev Lett 103: 10–108702. doi:10.1103/PhysRevLett.103.108702

    Article  Google Scholar 

  • Mott DR SD, Young TR, Levine J, Dionne JP, Makris A, Hubler G (Sept 1st–5th 2008) Blast-induced pressure fields beneath a military helmet. In: 20th international symposium on military aspects of blast and shock, Oslo

  • Nahum A, Smith R, Ward C (1977) Intracranial pressure dynamics during head impact. In: Proceedings of 21st stapp car crash conference, pp 339–366

  • Nakagawa A, Fujimura M, Kato K, Okuyama H, Hashimoto T, Takayama K, Tominaga T (2009) Shock wave-induced brain injury in rat: novel traumatic brain injury animal model Acta Neurochirurgica Supplements. In: Steiger HJ (ed) Acta neurochirurgica supplementum, vol 102. Springer, Vienna, pp 421–424. doi:10.1007/978-3-211-85578-2_82

  • National Institutes of Health (2009) The Visible Human Project, National Library of Medicine, http://www.nlm.nih.gov/research/visible/visible_human.html

  • Nicolle S, Lounis M, Willinger R, Palierne JF (2005) Shear linear behavior of brain tissue over a large frequency range. Biorheology 42(3): 209–223

    Google Scholar 

  • Nusholtz GS, Kaiker PS, Gould WS (1987) Two factors critical in the pressure response of the impacted head. Aviat Space Environ Med 58(12): 1157–1164

    Google Scholar 

  • Nyein MK, Jason AM, Yu L, Pita CM, Joannopoulos JD, Moore DF, Radovitzky RA (2010) In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc Natl Acad Sci. doi:10.1073/pnas.1014786107

  • Pervin F, Chen WW (2009) Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. J Biomech 42(6): 731–735. doi:10.1016/j.jbiomech.2009.01.023

    Article  Google Scholar 

  • Prevost TP, Balakrishnan A, Suresh S, Socrate S (2011) Biomechanics of brain tissue. Acta Biomaterialia 7(1): 83–95. doi:10.1016/j.actbio.2010.06.035

    Article  Google Scholar 

  • Ramos A, Simões JA (2006) Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med Eng Phys 28(9): 916–924. doi:10.1016/j.medengphy.2005.12.006

    Article  Google Scholar 

  • Ruan JS, Khalil T, King AI (1994) Dynamic response of the human head to impact by three-dimensional finite element analysis. J Biomech Eng Trans ASME 116(1): 44–50

    Article  Google Scholar 

  • Schneiders R (2000) Algorithms for quadrilateral and hexahedral mesh generation. In: Proceedings of the VKI lecture series on computational fluid cynamics

  • Stalnaker RL (1969) Mechanical properties of the head, Ph.D. Dissertation. West Virginia University

  • Sundaramurthy A, Alai A, Ganpule S, Holmberg A, Plougonven E, Chandra N (2012) Blast-induced biomechanical loading of the rat: experimental and anatomically accurate computational blast injury model. J Neurotrauma [ahead of print. doi:10.1089/neu.2012.2413 ]

  • Takhounts EG, Eppinger RH, Campbell JQ, Tannous RE, Power ED, Shook LS (2003) On the development of the SIMon finite element head model. Stapp Car Crash J 47: 107–133

    Google Scholar 

  • Takhounts EG, Ridella SA, Hasija V, Tannous RE, Campbell JQ, Malone D, Danelson K, Stitzel J, Rowson S, Duma S (2008) Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J 52: 1–31

    Google Scholar 

  • Tanielian T, Jaycox LH (2008) Invisible wounds of war. RAND Corp, Santa Monica

    Google Scholar 

  • Taylor PA, Ford CC (2009) Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. J Biomech Eng Trans ASME 131(6): 061007. doi:10.1115/1.3118765

    Article  Google Scholar 

  • Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness: a practical scale. Lancet 304(7872): 81–84. doi:10.1016/s0140-6736(74)91639-0

    Article  Google Scholar 

  • Trosseille X, Tarriére C, Lavaste F, Guillon F, Domont A (1992) Development of a F.E.M. of the human head according to a specific test protocol. SAE Technical Paper 922527. In: Stapp car crash conference. doi:10.4271/922527

  • Wang Y, Wei YL, Oguntayo S, Wilkins W, Arun P, Valiyaveettil M, Song J, Long JB, Nambiar MP (2011) Tightly coupled repetitive blast-induced traumatic brain injury: development and characterization in mice. J Neurotrauma 28(10): 2171–2183. doi:10.1089/neu.2011.1990

    Article  Google Scholar 

  • Ward CC, Chan M, Nahum AM (1980) Intracranial pressure—a brain injury criterion. In: Proceedings of 24th stapp car crash conference SAE No. 801304, p 161

  • Wieding J, Souffrant R, Fritsche A, Mittelmeier W, Bader R (2012) Finite element analysis of osteosynthesis screw fixation in the bone stock: an appropriate method for automatic screw modelling. PLoS One 7(3): e33776. doi:10.1371/journal.pone.0033776

    Article  Google Scholar 

  • Willinger R, Kang HS, Diaw B (1999) Three-dimensional human head finite-element model validation against two experimental impacts. Ann Biomed Eng 27(3): 403–410. doi:10.1114/1.165

    Article  Google Scholar 

  • Zhang L, Yang KH, Dwarampudi R, Omori K, Li T, Chang K, Hardy WN, Khalil TB, King AI (2001a) Recent advances in brain injury research: a new human head model development and validation. Stapp Car Crash J 45: 369–394

    Google Scholar 

  • Zhang LY, Yang KH, King AI (2001b) Comparison of brain responses between frontal and lateral impacts by finite element modeling. J Neurotrauma 18(1): 21–30. doi:10.1089/089771501750055749

    Article  MATH  Google Scholar 

  • Zhang LY, Yang KH, King AI (2004) A proposed injury threshold for introduction mild traumatic brain injury. J Biomech Eng Trans ASME 126(2): 226–236. doi:10.1115/1.1691446

    Article  Google Scholar 

  • Zhu F, Mao H, DalCengio Leonardi A, Wagner C, Chou C, Jin X, Bir C, VandeVord P, Yang KH, King AI (2010) Development of an FE Model of the rat head subjected to air shock loading. Stapp Car Crash J 54: 211–225

    Google Scholar 

  • Zhu F, Wagner C, DalCengio Leonardi A, Jin X, VandeVord P, Chou C, Yang K, King A (2012) Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation. Biomech Model Mechanobiol 11(3–4): 341–353. doi:10.1007/s10237-011-0314-2

    Article  Google Scholar 

  • Zoghi-Moghadam M, Sadegh AM (2009) Global/local head models to analyse cerebral blood vessel rupture leading to ASDH and SAH. Comput Methods Biomech Biomed Eng 12(1): 1–12. doi:10.1080/10255840802020420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandra.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

DOCX 1 (DOCX 587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganpule, S., Alai, A., Plougonven, E. et al. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. Biomech Model Mechanobiol 12, 511–531 (2013). https://doi.org/10.1007/s10237-012-0421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0421-8

Keywords

Navigation