Skip to main content
Log in

Self-Synchronization and Vibration Isolation Theories in Anti-resonance System with Dual-Motor and Double-Frequency Actuation

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Background

Traditional vibrating system has the characteristics of poor isolation ability and easy to plug the screen.

Purpose

To enhance vibration isolation ability and probability of screen plugging during the operation of vibrating screens, an anti-resonance system with dual-motor and double-frequency actuation is proposed.

Method

For mastering the dynamic characteristics of the system, the self-synchronization mechanism and stability of the eccentric rotors bonded in the induction motor is explored. First, the dynamic equation of the system is established using Lagrange method. Subsequently, the synchronization criterion between the eccentric rotors is studied by small parameter method. In light of Hamilton principle, the stability of the synchronous states of the rotors is determined. Besides, the influence of the structural parameters on vibration isolation ability and synchronization characteristics is discussed by numerical computation. Finally, according to Runge-Kutta principle, some simulation results are obtained to verify the validity of the self-synchronization and vibration isolation in this paper.

Results and conclusions

The results show that the synchronous state of the eccentric rotors is mainly effected by installation angle of the motors; the ability of the vibration isolation is mostly determined by spring stiffness and rotor mass. The present findings should give theoretical direction to design the anti-resonance system with double-frequency actuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bonkobara Y, Ono T, Kondou T (2011) Development of a generation mechanism of synchronous vibration suitable for hand-held vibrating tools: investigation of an impact model with two oscillators. J Syst Des Dyn 5:1361–1375

    Google Scholar 

  2. Zhou P, Yao Z, Ma J, Zhu Z (2021) A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos Solitons Fractals 145:110751

    Article  MathSciNet  Google Scholar 

  3. Lawson H, Holló G, Horvath R, Kitahata H (2020) Chemical resonance, beats and frequency locking in forced chemical oscillatory systems. J Phys Chem Lett 11:3014–3019

    Article  Google Scholar 

  4. Du MJ, Hou YJ, Yu C, Wang WY (2020) Experimental investigation on synchronization of two co-rating rotors coupled with nonlinear springs. IEEE Access 8:48226–48240

    Article  Google Scholar 

  5. Blekhman II (1988) Synchronization in science and technology. ASME Press, New York

    Google Scholar 

  6. Blekhman II (2000) Vibrational mechanics. World Scientific, Singapore

    Book  Google Scholar 

  7. Zhao CY, Zhang YM, Wen BC (2010) Synchronization and general dynamic symmetry of a vibrating system with two exciters rotating in opposite directions. Chin Phys B 19:030301

    Article  Google Scholar 

  8. Zhang XL, Kong XX, Wen BC (2016) Theoretical study on synchronization of two exciters in a nonlinear vibrating system with multiple resonant types. Nonlinear Dyn 85:141–154

    Article  MathSciNet  Google Scholar 

  9. Zhang XL, Li ZM, Li M, Wen BC (2021) Stability and Sommerfeld effect of a vibrating system with two vibrators driven separately by induction motors. IEEE ASME Trans Mechatron 26(2):807–817

    Article  Google Scholar 

  10. Zhang XL, Gu DW, Yue HL, Li M (2021) Synchronization and stability of a far-resonant vibrating system with three rollers driven by two vibrators. Appl Math Model 91:261–279

    Article  MathSciNet  Google Scholar 

  11. Fang P, Peng H, Zou M, Hou DY (2020) Synchronous state of unbalanced rotors in a three-dimensional space and far-resonance system. Process Mech Eng 234:108–122

    Article  Google Scholar 

  12. Djanan A, Nbendjo B, Woafo P (2014) Effect of self-synchronization of DC motors on the amplitude of vibration of a rectangular plate. Eur Phys J Spec Top 223:813–825

    Article  Google Scholar 

  13. Fang P, Wang YG, Hou YJ, Wu Y (2020) Synchronous control of multi-motor coupled with pendulum in a vibration system. IEEE Access 8:51964–51975

    Article  Google Scholar 

  14. Zou M, Fan PG, Peng H (2019) Study on synchronization characteristics for self-synchronous vibration system with dual-frequency and dual-motor excitation. J Mech Sci Technol 33:1065–1078

    Article  Google Scholar 

  15. Kong XX, Zhang XL, Chen XZ (2016) Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm. J Sound Vib 370:23–42

    Article  Google Scholar 

  16. Kong XX, Chen XZ, Wen BC (2018) Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system. Mech Syst Signal Process 102:158–179

    Article  Google Scholar 

  17. Zou M, Fang P, Hou YJ (2020) Synchronization analysis of two eccentric rotors with double-frequency excitation considering sliding mode control. Commun Nonlinear Sci Numer Simul 92:105458

    Article  MathSciNet  Google Scholar 

  18. Li H, Liu D, Jiang L (2014) Self-synchronization theory of a vibrating system with a two-stage vibration isolation frame driven by two motors. J Vib Shock 33:134–140

    Google Scholar 

  19. Peng H, Hou YJ, Fang P (2020) Synchronization of the secondary isolation system with a dual-motor excitation. J Vibroeng 22:16–32

    Article  Google Scholar 

  20. Hou YJ, Peng H, Fang P (2019) Synchronous characteristics of two excited motors in an anti-resonance system. J Adv Mech Des Syst Manuf 13:JAMDSM0050

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by (the Chinese Postdoctoral Fund) [Grant number (no. 2019M653482)], (the Sichuan Science and Technology Support Project) [Grant number (no. 2020YFG0181)] and (the Chengdu International Science and Technology Cooperation Project) [Grant number (no. 2020-GH02-00071-HZ)].

Funding

The research leading to these results received funding from (the Chinese Postdoctoral Fund) under Grant Agreement no. (2019M653482), (the Sichuan Science and Technology Support Project) under Grant Agreement no. (2020YFG0181) and (the Chengdu International Science and Technology Cooperation Project) under Grant Agreement no. (2020-GH02-00071-HZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The parameters of Eq. (13)

$$ \begin{aligned} & \eta _{1} = m_{1} {\text{/}}M,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \eta _{2} = m_{{\text{2}}} {\text{/}}M{\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \eta _{3} = M_{1} /M{\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \eta _{4} = m_{1} /M_{1} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \eta _{5} = m_{2} /M_{1} \\ & \eta _{{12}} = m_{1} /m_{2} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} r_{0} = r/l_{e} {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} r_{l} = l/l_{e} {\kern 1pt} {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} l_{e} = \sqrt {J_{2} /M} \\ & \omega _{{x_{1} }} = \sqrt {k_{{x_{1} }} /M_{1} } {\kern 1pt} {\kern 1pt} {\kern 1pt} ,\xi _{{x_{1} }} = f_{{x_{1} }} /2\sqrt {M_{1} k_{{x_{1} }} } {\kern 1pt} {\kern 1pt} {\kern 1pt} ,n_{{VLx_{1} }} = \omega _{m} /\omega _{{x_{1} }} ,n_{{VHx_{1} }} = 2\omega _{m} /\omega _{{x_{1} }} \\ & \omega _{{x_{2} }} = \sqrt {k_{{x_{2} }} /M} {\kern 1pt} {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} \xi _{{x_{2} }} = f_{{x_{2} }} /2\sqrt {Mk_{{x_{2} }} } {\kern 1pt} {\kern 1pt} {\kern 1pt} ,n_{{ILx_{2} }} = \omega _{m} /\omega _{{x_{2} }} ,n_{{IHx_{2} }} = 2\omega _{m} /\omega _{{x_{2} }} \\ & \omega _{{y_{1} }} = \sqrt {k_{{y_{1} }} /M_{1} } {\kern 1pt} {\kern 1pt} {\kern 1pt} ,\xi _{{y_{1} }} = f_{{y_{1} }} /2\sqrt {M_{1} k_{{y_{1} }} } {\kern 1pt} {\kern 1pt} {\kern 1pt} ,n_{{VLy_{1} }} = \omega _{m} /\omega _{{y_{1} }} ,n_{{VHy_{1} }} = 2\omega _{m} /\omega _{{y_{1} }} \\ & \omega _{{y_{2} }} = \sqrt {k_{{y_{2} }} /M} {\kern 1pt} {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} \xi _{{y_{2} }} = f_{{y_{2} }} /2\sqrt {Mk_{{y_{2} }} } {\kern 1pt} {\kern 1pt} {\kern 1pt} ,n_{{ILy_{2} }} = \omega _{m} /\omega _{{y_{2} }} ,n_{{IHy_{2} }} = 2\omega _{m} /\omega _{{y_{2} }} \\ & \omega _{{\psi _{1} }} = \sqrt {k_{{\psi _{1} }} /M_{1} } {\kern 1pt} {\kern 1pt} {\kern 1pt} ,\xi _{{\psi _{1} }} = f_{{\psi _{1} }} /2\sqrt {M_{1} k_{{\psi _{1} }} } {\kern 1pt} {\kern 1pt} {\kern 1pt} ,n_{{VL\psi _{1} }} = \omega _{m} /\omega _{{\psi _{1} }} ,n_{{VH\psi _{1} }} = 2\omega _{m} /\omega _{{\psi _{1} }} \\ & \omega _{{\psi _{2} }} = \sqrt {k_{{\psi _{2} }} /M} {\kern 1pt} {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} \xi _{{\psi _{2} }} = f_{{\psi _{2} }} /2\sqrt {Mk_{{\psi _{2} }} } {\kern 1pt} {\kern 1pt} {\kern 1pt} ,n_{{IL\psi _{2} }} = \omega _{m} /\omega _{{\psi _{2} }} ,n_{{IH\psi _{2} }} = 2\omega _{m} /\omega _{{\psi _{1} }} , \\ \end{aligned} $$
(31)
$$ \begin{gathered} \mu _{{Ij^{ * } j_{2} }} = \sqrt {\frac{{a_{{Ij^{ * } j_{2} }}^{2} + b_{{j^{ * } }}^{2} }}{{c_{{j^{ * } }}^{2} + d_{{j^{ * } }}^{2} }}} \quad \gamma _{{Ij^{ * } j_{2} }} = \arctan \frac{{a_{{Ij^{ * } j_{2} }} d_{{j^{ * } }} - b_{{j^{ * } }} c_{{j^{ * } }} }}{{a_{{Ij^{ * } j_{2} }} c_{{j^{ * } }} + b_{{j^{ * } }} d_{{j^{ * } }} }}, \hfill \\ \mu _{{Vj^{ * } j_{1} }} = \sqrt {\frac{{a_{{Vj^{ * } j_{1} }}^{2} + b_{{j^{ * } }}^{2} }}{{c_{{j^{ * } }}^{2} + d_{{j^{ * } }}^{2} }}} \quad \gamma _{{Vj^{ * } j_{1} }} = \arctan \frac{{a_{{Vj^{ * } j_{1} }} d_{{j^{ * } }} - b_{{j^{ * } }} c_{{j^{ * } }} }}{{a_{{Vj^{ * } j_{1} }} c_{{j^{ * } }} + b_{{j^{ * } }} d_{{j^{ * } }} }}, \hfill \\ \end{gathered} $$
(32)
$$ \begin{aligned} & a_{{Ij^{ * } j_{2} }} = n_{{Ij^{ * } j_{2} }}^{2} (1 - n_{{Vj^{ * } j_{1} }}^{2} ), \\ & a_{{Vj^{ * } j_{1} }} = n_{{Ij^{ * } j_{2} }}^{2} , \\ & b_{{j^{ * } }} = 2\xi _{{j_{1} }} n_{{Vj^{ * } j_{1} }} n_{{Ij^{ * } j_{2} }}^{2} , \\ & c_{{j^{ * } }} = (1 - n_{{Vj^{ * } j_{1} }}^{2} )(1 - n_{{Ij^{ * } j_{2} }}^{2} ) - n_{{Ij^{ * } j_{2} }} (4\xi _{{j_{2} }} \xi _{{j_{1} }} n_{{Vj^{ * } j_{1} }} + \eta _{3} n_{{Ij^{ * } j_{2} }} ), \\ & d_{{j^{ * } }} = 2[\xi _{{j_{1} }} n_{{Vj^{ * } j_{1} }} + \xi _{{j_{2} }} n_{{Ij^{ * } j_{2} }} (1 - n_{{Vj^{ * } j_{1} }}^{2} ) - (\eta _{3} + 1)\xi _{{j_{1} }} n_{{Ij^{ * } j_{2} }}^{2} n_{{Vj^{ * } j_{1} }} ], \\ \end{aligned} $$
(33)

where, j* = H, L; j = x, y, ψ

The parameters of Eqs. (17) and (18)

$$ a_{{11}}^{*} = m_{1} r^{2} \omega _{{m0}} W_{{c1}} , $$
(34)
$$ a_{{12}}^{*} = m_{1} r^{2} \omega _{{m0}} W_{{c1}} , $$
(35)
$$ a_{{21}}^{*} = \frac{1}{2}m_{2} r^{2} \omega _{{m0}} W_{{c2}} , $$
(36)
$$ a_{{22}}^{*} = - \frac{1}{2}m_{2} r^{2} \omega _{{m0}} W_{{c2}} , $$
(37)
$$ a_{{11}} = m_{1} r^{2} \omega _{{\omega 0}}^{2} \left[ {4W_{{s1}} + \frac{1}{2}H_{1} \sin (\bar{\alpha }_{0} + 2\beta _{2} - \beta _{1} + 2\gamma _{{IL\psi _{2} }} )} \right], $$
(38)
$$ a_{{12}} = m_{1} r^{2} \omega _{{\omega 0}}^{2} \left[ {4W_{{s1}} - \frac{1}{2}H_{1} \sin (\bar{\alpha }_{0} + 2\beta _{2} - \beta _{1} + 2\gamma _{{IL\psi _{2} }} )} \right]{\kern 1pt} , $$
(39)
$$ {\kern 1pt} a_{{21}} = m_{2} r^{2} \omega _{{\omega 0}}^{2} [W_{{s2}} + 2H\sin (\bar{\alpha }_{0} + {\text{2}}\beta _{2} - \beta _{1} + \gamma _{{IL\psi _{2} }} - \gamma _{{IH\psi _{2} }} )], $$
(40)
$$ a_{{22}} = - m_{2} r^{2} \omega _{{\omega 0}}^{2} W_{{s2}} , $$
(41)
$$ a_{1} = \frac{1}{2}{\kern 1pt} m_{1} r^{2} \omega _{{\omega 0}}^{2} \left[ {4W_{{s1}} + {\kern 1pt} \frac{1}{2}H_{1} \sin (\bar{\alpha }_{0} + 2\beta _{2} - \beta _{1} + 2\gamma _{{IL\psi _{2} }} )} \right], $$
(42)
$$ a_{2} = \frac{1}{2}m_{2} r^{2} \omega _{{\omega 0}}^{2} [W_{{s2}} + 2H_{2} \sin (\bar{\alpha }_{0} + {\text{2}}\beta _{2} - \beta _{1} + \gamma _{{IL\psi _{2} }} - \gamma _{{IH\psi _{2} }} )], $$
(43)
$$ W_{{c1}} = \eta _{1} \mu _{{IHx_{2} }} \cos \gamma _{{IHx_{2} }} + \eta _{1} \mu _{{IHy_{2} }} cos\gamma _{{IHy_{2} }} + \eta _{1} r_{l}^{2} \mu _{{IH\psi _{2} }} \cos \gamma _{{IH\psi _{2} }} {\kern 1pt} , $$
(44)
$$ W_{{s1}} = \eta _{1} \mu _{{IHx_{2} }} \sin \gamma _{{IHx_{2} }} + \eta _{1} \mu _{{IHy_{2} }} \sin \gamma _{{IHy_{2} }} + \eta _{1} \mu _{{IH\psi _{2} }} r_{l}^{2} sin\gamma _{{IH\psi _{2} }} , $$
(44)
$$ W_{{c2}} = \eta _{2} \mu _{{ILx_{2} }} \cos \gamma _{{ILx_{2} }} + \eta _{2} \mu _{{ILy_{2} }} \cos \gamma _{{ILy_{2} }} + r_{l}^{2} \eta _{2} \mu _{{IL\psi _{2} }} \cos \gamma _{{IL\psi _{2} }} , $$
(45)
$$ W_{{s2}} = \eta _{2} \mu _{{ILx_{2} }} \sin \gamma _{{ILx_{2} }} + \eta _{2} \mu _{{ILy_{2} }} \sin \gamma _{{ILy_{2} }} + r_{l}^{2} \eta _{2} \mu _{{IL\psi _{2} }} \sin \gamma _{{IL\psi _{2} }} , $$
(46)
$$ H_{1} = r_{0} r_{l}^{3} \eta _{2}^{2} \mu _{{IL\psi _{2} }}^{2} , $$
(47)
$$ H_{2} = r_{0} r_{l}^{3} \eta _{1} \eta _{2} \mu _{{IH\psi _{2} }} \mu _{{IL\psi _{2} }} . $$
(48)

Appendix B

The parameters of Eq. (20)

$$ {\mathbf{B}} = \left[ \begin{gathered} b_{{11}} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} b_{{12}} \hfill \\ b_{{21}} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} b_{{22}} \hfill \\ \end{gathered} \right],{\mathbf{C}} = \left[ \begin{gathered} c_{{11}} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} c_{{12}} \hfill \\ c_{{21}} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} c_{{22}} \hfill \\ \end{gathered} \right],{\mathbf{E}} = \left[ \begin{gathered} e_{1} \hfill \\ e_{2} \hfill \\ \end{gathered} \right],{\kern 1pt} {\mathbf{\dot{\bar{\varepsilon }}}} = \left[ \begin{gathered} \dot{\bar{\varepsilon }}_{1} \hfill \\ \dot{\bar{\varepsilon }}_{2} \hfill \\ \end{gathered} \right]{\kern 1pt} {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathbf{\bar{\varepsilon }}} = \left[ \begin{gathered} \bar{\varepsilon }_{1} \hfill \\ \bar{\varepsilon }_{2} \hfill \\ \end{gathered} \right]{\kern 1pt} , $$
(49)
$$ b_{{11}} = 2J_{{01}} \omega _{{m0}} + J_{{02}} \omega _{{m0}} + a_{{11}}^{*} + a_{{21}}^{*} {\kern 1pt} , $$
(50)
$$ b_{{12}} = 2J_{{01}} \omega _{{m0}} - J_{{02}} \omega _{{m0}} + a_{{12}}^{*} + a_{{22}}^{*} , $$
(51)
$$ b_{{21}} = 2J_{{01}} \omega _{{m0}} - J_{{02}} \omega _{{m0}} + a_{{11}}^{*} - a_{{21}}^{*} , $$
(52)
$$ b_{{22}} = 2J_{{01}} \omega _{{m0}} + J_{{02}} \omega _{{m0}} + a_{{12}}^{*} - a_{{22}}^{*} , $$
(53)
$$ c_{{11}} = - k_{{e01}} - k_{{e02}} - a_{{11}} - a_{{21}} - 2f_{1} \omega _{{m0}} - f_{2} \omega _{{m0}} , $$
(54)
$$ c_{{12}} = {\kern 1pt} - k_{{e01}} + k_{{e02}} - a_{{12}} - a_{{22}} - 2f_{1} \omega _{{m0}} + f_{2} \omega _{{m0}} , $$
(55)
$$ c_{{21}} = {\kern 1pt} - k_{{e01}} + k_{{e02}} - a_{{11}} + a_{{21}} - 2f_{1} \omega _{{m0}} + f_{2} \omega _{{m0}} , $$
(56)
$$ c_{{22}} = - k_{{e01}} - k_{{e02}} - a_{{12}} + a_{{22}} - 2f_{1} \omega _{{m0}} - f_{2} \omega _{{m0}} , $$
(57)
$$ e_{1} = T_{{e01}} + T_{{e02}} - 2f_{1} \omega _{{m0}} - f_{2} \omega _{{m0}} - a_{1} - a_{2} , $$
(58)
$$ e_{2} = T_{{e01}} - T_{{e02}} - 2f_{1} \omega _{{m0}} + f_{2} \omega _{{m0}} - a_{1} + a_{2} . $$
(59)

The parameters of Eq. (21)

$$ N_{{c0}} = \sqrt {a_{{c0}}^{2} + b_{{c0}}^{2} } , $$
(60)
$$ N_{{s0}} = \sqrt {a_{{s0}}^{2} + b_{{s0}}^{2} } , $$
(61)
$$ N_{{c1}} = \sqrt {a_{{c1}}^{2} + b_{{c1}}^{2} } , $$
(62)
$$ N_{{s1}} = \sqrt {a_{{s1}}^{2} + b_{{s1}}^{2} } , $$
(63)
$$ \theta _{{s0}} = \left\{ \begin{gathered} \arctan (b_{{s0}} /a_{{s0}} ),a_{{s0}} {\kern 1pt} > 0 \hfill \\ \pi + \arctan (b_{{s0}} /a_{{s0}} ),a_{{s0}} {\kern 1pt} < 0{\kern 1pt} \hfill \\ \end{gathered} \right., $$
(64)
$$ \theta _{{c0}} = \left\{ \begin{gathered} \arctan (b_{{c0}} /a_{{c0}} ),a_{{c0}} {\kern 1pt} > 0 \hfill \\ \pi + \arctan (b_{{c0}} /a_{{c0}} ),a_{{c0}} {\kern 1pt} < 0{\kern 1pt} \hfill \\ \end{gathered} \right.{\kern 1pt} {\kern 1pt} , $$
(65)
$$ \theta _{{s0}} = \left\{ \begin{gathered} \arctan (b_{{s1}} /a_{{s1}} {\kern 1pt} ),a_{{s1}} {\kern 1pt} > 0 \hfill \\ \pi + \arctan (b_{{s1}} /a_{{s1}} {\kern 1pt} ),a_{{s1}} < 0{\kern 1pt} \hfill \\ \end{gathered} \right., $$
(66)
$$ \theta _{{c0}} = \left\{ \begin{gathered} \arctan (b_{{c1}} /a_{{c1}} {\kern 1pt} ),a_{{c1}} {\kern 1pt} > 0 \hfill \\ \pi + \arctan {\kern 1pt} (b_{{c1}} /a_{{c1}} {\kern 1pt} ),a_{{c1}} {\kern 1pt} < 0{\kern 1pt} \hfill \\ \end{gathered} \right.{\kern 1pt} {\kern 1pt} , $$
(67)
$$ a_{{c0}} = \left[ {\frac{1}{4}\eta _{{12}} H_{1} \cos \left( {2\beta _{2} - \beta _{1} } \right)\cos \left( {2\gamma _{{IL\psi _{2} }} } \right) - H_{2} \cos \left( {{\text{2}}\beta _{2} - \beta _{1} } \right)\cos \left( {\gamma _{{IL\psi _{2} }} - \gamma _{{IH\psi _{2} }} } \right)} \right], $$
(68)
$$ b_{{c0}} = \left[ {\frac{1}{4}\eta _{{12}} H_{1} \sin \left( {2\beta _{2} - \beta _{1} } \right)\cos \left( {2\gamma _{{IL\psi _{2} }} } \right) - H_{2} \sin \left( {{\text{2}}\beta _{2} - \beta _{1} } \right)\cos \left( {\gamma _{{IL\psi _{2} }} - \gamma _{{IH\psi _{2} }} } \right)} \right], $$
(69)
$$ a_{{s0}} = - \left[ {\frac{1}{4}\eta _{{12}} H_{1} \sin \left( {2\beta _{2} - \beta _{1} } \right)\sin \left( {2\gamma _{{IL\psi _{2} }} } \right) - H_{2} \sin \left( {{\text{2}}\beta _{2} - \beta _{1} } \right)\sin \left( {\gamma _{{IL\psi _{2} }} - \gamma _{{IH\psi _{2} }} } \right)} \right], $$
(70)
$$ b_{{s0}} = \left[ {\frac{1}{4}\eta _{{12}} H_{1} \cos \left( {2\beta _{2} - \beta _{1} } \right)\sin \left( {2\gamma _{{IL\psi _{2} }} } \right) - H_{2} \cos \left( {{\text{2}}\beta _{2} - \beta _{1} } \right)\sin \left( {\gamma _{{IL\psi _{2} }} - \gamma _{{IH\psi _{2} }} } \right)} \right], $$
(71)
$$ a_{{c1}} = \left[ {\frac{1}{4}\eta _{{12}} H_{1} \cos \left( {2\beta _{2} - \beta _{1} } \right)\cos \left( {2\gamma _{{IL\psi _{2} }} } \right) + H_{2} \cos \left( {{\text{2}}\beta _{2} - \beta _{1} } \right)\cos \left( {\gamma _{{IL\psi _{2} }} - \gamma _{{IH\psi _{2} }} } \right)} \right], $$
(72)
$$ b_{{c1}} = \left[ {\frac{1}{4}\eta _{{12}} H_{1} \sin \left( {2\beta _{2} - \beta _{1} } \right)\cos \left( {2\gamma _{{IL\psi _{2} }} } \right) + H_{2} \sin \left( {{\text{2}}\beta _{2} - \beta _{1} } \right)\cos \left( {\gamma _{{IL\psi _{2} }} - \gamma _{{IH\psi _{2} }} } \right)} \right], $$
(73)
$$ a_{{s1}} = - \left[ {\frac{1}{4}\eta _{{12}} H_{1} \sin \left( {2\beta _{2} - \beta _{1} } \right)\sin \left( {2\gamma _{{IL\psi _{2} }} } \right) + H_{2} \sin \left( {{\text{2}}\beta _{2} - \beta _{1} } \right)\sin \left( {\gamma _{{IL\psi _{2} }} - \gamma _{{IH\psi _{2} }} } \right)} \right], $$
(74)
$$ b_{{s1}} = \left[ {\frac{1}{4}\eta _{{12}} H_{1} \cos \left( {2\beta _{2} - \beta _{1} } \right)\sin \left( {2\gamma _{{IL\psi _{2} }} } \right) + H_{2} \cos \left( {{\text{2}}\beta _{2} - \beta _{1} } \right)\sin \left( {\gamma _{{IL\psi _{2} }} - \gamma _{{IH\psi _{2} }} } \right)} \right]. $$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, P., Sun, H., Zou, M. et al. Self-Synchronization and Vibration Isolation Theories in Anti-resonance System with Dual-Motor and Double-Frequency Actuation. J. Vib. Eng. Technol. 10, 409–424 (2022). https://doi.org/10.1007/s42417-021-00384-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00384-w

Keywords

Navigation