Skip to main content
Log in

Research on synchronization and steady-state responses of a two-body vibration system driven by two co-rotating eccentric rotors mounted on different bodies

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a new two-body self-synchronization vibration system characterized by two ideal vibration-exciting motors (asynchronous motors) installed on different vibrating bodies is investigated. Firstly, differential equations of the system are established via the Lagrange equation. Moreover, natural frequencies and stable solutions are obtained. Then, the conditions for the system to implement stable self-synchronization are derived using the equilibrium point theory of the dynamics system and Lyapunov’s stability theory. The effects of spring stiffness on the natural frequencies and synchronous motion are numerically analyzed. The steady-state responses of the system are obtained for different structure parameters. The research results show that this system can implement two types of self-synchronization motion under different structure parameters. The first type fluctuates the phase differences in the proximity of zero rad, while the other one fluctuates the phase differences near π rad. Resonance significantly affects the synchronous motion of the system, rapidly changing in phase differences and amplitudes. An increase in the value of \(k_{y2}\) is not conducive to implementing the stable synchronous motion. Finally, the correctness of the theory and electromechanical coupling simulation results is experimentally validated. The results of this paper can be directly used to determine the structural parameters for a new type of vibrating machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jiang, H., Zhao, Y., Qiao, J., et al.: Process analysis and operational parameter optimization of a variable amplitude screen for coal classification. Fuel 194, 329–338 (2017)

    Article  Google Scholar 

  2. Jiang, H., Zhao, Y., Duan, C., et al.: Properties of technological factors on screening performance of coal in an equal-thickness screen with variable amplitude. Fuel 188, 511–521 (2017)

    Article  Google Scholar 

  3. Blekhman, I.I., Fradkov, A.L., Nijmeijer, H., et al.: On self-synchronization and controlled synchronization. Syst. Control Lett. 31(5), 299–305 (1997)

    Article  MathSciNet  Google Scholar 

  4. Blekhman, I.I., Fradkov, A.L., Tomchina, O.P., et al.: Self-synchronization and controlled synchronization: general definition and example design. Math. Comput. Simul 58, 367–384 (2002)

    Article  MathSciNet  Google Scholar 

  5. Wen, B.C.: Theory and dynamic design method of vibration machinery. China Machine Press, Beijing (2002). ((in Chinese))

    Google Scholar 

  6. Wen, B.C., Liu, S.Y., Chen, Z.B., et al.: Theory of Mechanical Vibration and Its Applications. Higher Education Press, Beijing (2009). ((in Chinese))

    Google Scholar 

  7. Paz, M., Cole, J.D.: Self-synchronization of two unbalanced rotors. Asme. J. Vib. Acoust. 114(1), 37–41 (1992)

    Article  Google Scholar 

  8. Hou, Y., Yan, G.: Electromechanical-coupling mechanism of self-synchronous vibrating system with three-motor-driving. J. Vibrat. Eng. 19, 354–358 (2006). ((in Chinese))

    Google Scholar 

  9. Zhao, C., Zhu, H., Bai, T., et al.: Synchronization of two non-identical coupled exciters in a non-resonant vibrating system of linear motion. Part I: theoretical analysis. Shock. Vib. 16, 505–515 (2009)

    Article  Google Scholar 

  10. Zhao, C., Zhu, H., Bai, T., et al.: Synchronization of two non-identical coupled exciters in a non-resonant vibrating system of linear motion Part II: Numeric analysis. Shock. Vib. 16, 517–528 (2009)

    Article  Google Scholar 

  11. Zhang, X., Wen, B., Zhao, C.: Synchronization of three non-identical coupled exciters with the same rotating directions in a far-resonant vibrating system. J. Sound Vib. 332, 2300–2317 (2013)

    Article  Google Scholar 

  12. Zhang, X., Wen, B., Zhao, C.: Experimental investigation on synchronization of three co-rotating non-identical coupled exciters driven by three motors. J. Sound Vib. 333, 2898–2908 (2014)

    Article  Google Scholar 

  13. Balthazar, J.M., Felix, J.L.P., Brasil, R.M.F.: Short comments on self-synchronization of two non-ideal sources supported by a flexible portal frame structure. J. Vib. Control 10, 1739–1748 (2004)

    Article  Google Scholar 

  14. Balthazar, J.M., Felix, J.L.P., Brasil, R.M.F.: Some comments on the numerical simulation of self-synchronization of four non-ideal exciters. Appl. Math. Comput. 164, 615–625 (2005)

    MathSciNet  Google Scholar 

  15. Kong, X., Jiang, J., Zhou, C., et al.: Sommerfeld effect and synchronization analysis in a simply supported beam system excited by two non-ideal induction motors. Nonlinear Dyn. 100, 2047–2070 (2020)

    Article  Google Scholar 

  16. Kong, X., Chen, C., Wen, B.: Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system. Mech. Syst. Signal Process. 102, 158–179 (2018)

    Article  Google Scholar 

  17. Kong, X., Zhang, X., Chen, X., et al.: Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm. J. Sound Vib. 370, 23–42 (2016)

    Article  Google Scholar 

  18. Djanan, A.A.N., Nbendjo, B.R.N.: Effect of two moving non-ideal sources on the dynamic of a rectangular plate. Nonlinear Dyn. 92, 645–657 (2018)

    Article  Google Scholar 

  19. Djanan, A.A.N., Nbendjo, B.R.N., Woafo, P.: Effect of self-synchronization of DC motors on the amplitude of vibration of a rectangular plate. European Phys. J. Special Topics 223, 813–825 (2014)

    Article  Google Scholar 

  20. Koluda, P., Brzeski, P., Perlikowski, P.: Dynamics of n coupled double pendula suspended to the moving beam. Int. J. Struct. Stab. Dyn. 14(08), 1440028 (2014)

    Article  MathSciNet  Google Scholar 

  21. Koluda, P., Perlikowski, P., Czolczynski, K., et al.: Synchronization configurations of two coupled double pendula. Commun. Nonlinear Sci. Numer. Simul. 19, 977–990 (2014)

    Article  MathSciNet  Google Scholar 

  22. Fang, P., Wang, Y., Hou, Y., et al.: Synchronous control of multi-motor coupled with pendulum in a vibration system. IEEE Access 8, 51964–51975 (2020)

    Article  Google Scholar 

  23. Fang, P., Wang, Y., Zou, M., et al.: Combined control strategy for synchronization control in multi-motor-pendulum vibration system. J. Vib. Control 28(17–18), 2254–2267 (2022)

    Article  MathSciNet  Google Scholar 

  24. Fang, P., Hou, Y., Du, M.: Synchronization behavior of triple-rotor-pendula system in a dual-super-far resonance system. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(5), 1620–1640 (2019)

    Article  Google Scholar 

  25. Zhang, X., Wang, Z., Zhu, Y., et al.: Synchronization and stability of two pairs of reversed rotating exciters mounted on two different rigid frames. IEEE Access 7, 115348–115367 (2019)

    Article  Google Scholar 

  26. Zhang, X., Li, Z., Li, M., et al.: Stability and Sommerfeld effect of a vibrating system with two vibrators driven separately by induction motors. IEEE/ASME Trans. Mechatron. 26(2), 807–817 (2020)

    Article  Google Scholar 

  27. Zhang, X., Wen, B., Zhao, C.: Vibratory synchronization transmission of a cylindrical roller in a vibrating mechanical system excited by two exciters. Mech. Syst. Signal Process. 96, 88–103 (2017)

    Article  Google Scholar 

  28. He, B., Zhao, C., Wen, B.: Analysis of dynamic coupling characteristics for self synchronization vibrating system with dual-mass. J. Vib. Eng. 29(03), 521–531 (2016). ((in Chinese))

    Google Scholar 

  29. Zhao, C., He, B., Liu, J., et al.: Design method of dynamic parameters of a self-synchronization vibrating system with dual mass. Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn. 232(1), 3–20 (2017)

    Google Scholar 

  30. Chen, J.: Mathematical model and speed adjustment system of alternating motors. Defense Press, Beijing (1989). ((in Chinese))

    Google Scholar 

  31. Huang, Z., Song, G., Li, Y., et al.: Synchronous control of two counter-rotating eccentric rotors in nonlinear coupling vibration system. Mech. Syst. Signal Process. 114, 68–83 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51705437), the Sichuan Science and Technology Support Project (No. 2022YFQ0064), and the special scientific research plan projects of the Shaanxi Education Department (No. 21JK0557).

Funding

The Funding was provided by the special scientific research plan projects of the Shaanxi Education Department, No. 21JK0557, National Natural Science Foundation of China, No. 51705437, Sichuan Science and Technology Support Project, No. 2022YFQ0064

Author information

Authors and Affiliations

Authors

Contributions

LY was contributed to methodology, writing—original draft, writing—review and editing. was contributed to YH: investigation, supervision, resources, validation, funding acquisition.

Corresponding author

Correspondence to Le Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Parameters in Eq. (21)

$$\begin{gathered} a_{x} = \omega_{m}^{4} - \omega_{m}^{2} \left( {\frac{{\eta_{M} }}{{\eta_{k} }}\omega_{x1}^{2} + \beta^{2} \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{x1}^{4} + \eta_{M} \omega_{x1}^{2} + \omega_{x1}^{2} } \right) + \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{x1}^{4} \hfill \\ b_{x} = - \omega_{m}^{3} \left( {\beta \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{x1}^{2} + \beta \eta_{M} \omega_{x1}^{2} + \beta \omega_{x1}^{2} } \right) + 2\beta \omega_{m} \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{x1}^{4} \hfill \\ c_{x1} = - \omega_{m}^{2} + \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{x1}^{2} + \eta_{M} \omega_{x1}^{2} ,\;\;d_{x1} = \beta \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{x1}^{2} \omega_{m} + \beta \eta_{M} \omega_{x1}^{2} \omega_{m} , \hfill \\ d_{x2} = \beta \omega_{x1}^{2} \omega_{m} ,\;\;c_{x2} = \omega_{x1}^{2} ,p_{x} = - \omega_{m}^{2} + \omega_{x1}^{2} \hfill \\ \end{gathered}$$
(32)
$$\begin{gathered} \frac{{\left( {c_{x1} + id_{x1} } \right)}}{{\left( {a_{x} + ib_{x} } \right)}} = \sqrt {\frac{{c_{x1}^{2} + d_{x1}^{2} }}{{a_{x}^{2} + b_{x}^{2} }}} e^{{ - i\theta_{x1} }} ,\;\;\mu_{x11} = \sqrt {\frac{{c_{x1}^{2} + d_{x1}^{2} }}{{a_{x}^{2} + b_{x}^{2} }}} \hfill \\ \frac{{\left( {c_{x2} + id_{x2} } \right)}}{{\left( {a_{x} + ib_{x} } \right)}} = \sqrt {\frac{{c_{x2}^{2} + d_{x2}^{2} }}{{a_{x}^{2} + b_{x}^{2} }}} e^{{ - i\theta_{x2} }} ,\;\;\mu_{x12} = \sqrt {\frac{{c_{x2}^{2} + d_{x2}^{2} }}{{a_{x}^{2} + b_{x}^{2} }}} \hfill \\ \frac{{\left( {p_{x} + id_{x2} } \right)}}{{\left( {a_{x} + ib_{x} } \right)}} = \sqrt {\frac{{p_{x}^{2} + d_{x2}^{2} }}{{a_{x}^{2} + b_{x}^{2} }}} e^{{ - i\theta_{x3} }} ,\;\;\mu_{x22} = \sqrt {\frac{{p_{x}^{2} + d_{x2}^{2} }}{{a_{x}^{2} + b_{x}^{2} }}} \hfill \\ \theta_{x1} = \arctan \frac{{b_{x} c_{x1} - a_{x} d_{x1} }}{{a_{x} c_{x1} + b_{x} d_{x1} }},\;\;\;\;\;\;\;a_{x} c_{x1} + b_{x} d_{x1} > 0 \hfill \\ \theta_{x1} = \pi + \arctan \frac{{b_{x} c_{x1} - a_{x} d_{x1} }}{{a_{x} c_{x1} + b_{x} d_{x1} }},\;\;\;\;a_{x} c_{x1} + b_{x} d_{x1} < 0 \hfill \\ \theta_{x2} = \arctan \frac{{b_{x} c_{x2} - a_{x} d_{x2} }}{{a_{x} c_{x2} + b_{x} d_{x2} }},\;\;\;\;\;\;a_{x} c_{x2} + b_{x} d_{x2} > 0 \hfill \\ \theta_{x2} = \pi + \arctan \frac{{b_{x} c_{x2} - a_{x} d_{x2} }}{{a_{x} c_{x2} + b_{x} d_{x2} }},\;\;\;\;\;a_{x} c_{x2} + b_{x} d_{x2} > 0 \hfill \\ \theta_{x3} = \arctan \frac{{b_{x} p_{x} - a_{x} d_{x2} }}{{a_{x} p_{x} + b_{x} d_{x2} }},\;\;\;\;\;\;a_{x} p_{x} + b_{x} d_{x2} > 0 \hfill \\ \theta_{x3} = \pi + \arctan \frac{{b_{x} p_{x} - a_{x} d_{x2} }}{{a_{x} p_{x} + b_{x} d_{x2} }}\begin{array}{*{20}c} , & {} \\ \end{array} \begin{array}{*{20}c} {} & {} \\ \end{array} a_{x} p_{x} + b_{x} d_{x2} < 0 \hfill \\ \end{gathered}$$
(33)
$$\begin{gathered} A_{x1} = \eta_{m} r\omega_{m}^{2} \sqrt {\mu_{x11}^{2} + \eta_{M}^{2} \mu_{x12}^{2} + 2\eta_{M} \mu_{x11} \mu_{x12} \cos \left[ {\left( {\varphi_{1} - \varphi_{2} } \right) - \theta_{x1} + \theta_{x2} } \right]} \hfill \\ \phi_{x1} = \arctan \frac{{\left( {\mu_{x11} - \eta_{M} \mu_{x12} } \right)\sin \left( {\frac{{\left( {\varphi_{1} - \varphi_{2} } \right) - \theta_{x1} + \theta_{x2} }}{2}} \right)}}{{\left( {\mu_{x11} + \eta_{M} \mu_{x12} } \right)\cos \left( {\frac{{\left( {\varphi_{1} - \varphi_{2} } \right) - \theta_{x1} + \theta_{x2} }}{2}} \right)}}\begin{array}{*{20}c} {} & {} & {} \\ \end{array} \begin{array}{*{20}c} {} & {} \\ \end{array} \left( {\mu_{x11} + \eta_{M} \mu_{x12} } \right)\cos \left( {\frac{{\left( {\varphi_{1} - \varphi_{2} } \right) - \theta_{x1} + \theta_{x2} }}{2}} \right) > 0 \hfill \\ \phi_{x1} = \pi + \arctan \frac{{\left( {\mu_{x11} - \eta_{M} \mu_{x12} } \right)\sin \left( {\frac{{\left( {\varphi_{1} - \varphi_{2} } \right) - \theta_{x1} + \theta_{x2} }}{2}} \right)}}{{\left( {\mu_{x11} + \eta_{M} \mu_{x12} } \right)\cos \left( {\frac{{\left( {\varphi_{1} - \varphi_{2} } \right) - \theta_{x1} + \theta_{x2} }}{2}} \right)}}\begin{array}{*{20}c} {} & {} & {} \\ \end{array} \left( {\mu_{x11} + \eta_{M} \mu_{x12} } \right)\cos \left( {\frac{{\left( {\varphi_{1} - \varphi_{2} } \right) - \theta_{x1} + \theta_{x2} }}{2}} \right) < 0 \hfill \\ \end{gathered}$$
(34)
$$\begin{gathered} A_{x2} = \eta_{m} \eta_{M} r\omega_{m}^{2} \sqrt {\mu_{x12}^{2} + \mu_{x22}^{2} + 2\mu_{x12} \mu_{x22} \cos \left( {\varphi_{1} - \varphi_{2} - \theta_{x2} + \theta_{x3} } \right)} \hfill \\ \phi_{x2} = \arctan \frac{{\left( {\mu_{x12} - \mu_{x22} } \right)\sin \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{x2} + \theta_{x3} }}{2}} \right)}}{{\left( {\mu_{x12} + \mu_{x22} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{x2} + \theta_{x3} }}{2}} \right)}}\begin{array}{*{20}c} {} & {} & {} \\ \end{array} \left( {\mu_{x12} + \mu_{x22} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{x2} + \theta_{x3} }}{2}} \right) > 0 \hfill \\ \phi_{x2} = \pi + \arctan \frac{{\left( {\mu_{x12} - \mu_{x22} } \right)\sin \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{x2} + \theta_{x3} }}{2}} \right)}}{{\left( {\mu_{x12} + \mu_{x22} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{x2} + \theta_{x3} }}{2}} \right)}}\begin{array}{*{20}c} {} & {} & {} \\ \end{array} \left( {\mu_{x12} + \mu_{x22} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{x2} + \theta_{x3} }}{2}} \right) < 0 \hfill \\ \end{gathered}$$
(35)

Appendix B

Parameters in Eq. (22)

$$\begin{gathered} \omega_{y1}^{2} = \frac{{k_{y1} }}{{M_{1} }},\begin{array}{*{20}c} {} & {} \\ \end{array} \frac{{k_{y2} }}{{M_{2} }} = \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{y1}^{2} ,\begin{array}{*{20}c} {} & {} \\ \end{array} \frac{{k_{y1} }}{{M_{2} }} = \frac{{\eta_{M} k_{y1} }}{{M_{1} }} = \eta_{M} \omega_{y1}^{2} \hfill \\ \left[ {\begin{array}{*{20}c} {f_{y1} } \\ {f_{y2} } \\ \end{array} } \right] = \beta \left[ {\begin{array}{*{20}c} {k_{y1} } \\ {k_{y2} } \\ \end{array} } \right],\begin{array}{*{20}c} {} & {} \\ \end{array} \frac{{f_{y1} }}{{M_{1} }} = \beta \omega_{y1}^{2} ,\begin{array}{*{20}c} {} & {} \\ \end{array} \frac{{f_{y2} }}{{M_{2} }} = \beta \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{y1}^{2} {,}\begin{array}{*{20}c} {} & {} \\ \end{array} \frac{{f_{y1} }}{{M_{2} }} = \beta \eta_{M} \omega_{y1}^{2} \hfill \\ \end{gathered}$$
(36)
$$\begin{gathered} a_{y} = \omega_{m}^{4} - \omega_{m}^{2} \left( {\frac{{\eta_{M} }}{{\eta_{k} }}\omega_{y1}^{2} + \beta^{2} \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{y1}^{4} + \eta_{M} \omega_{y1}^{2} + \omega_{y1}^{2} } \right) + \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{y1}^{4} \hfill \\ b_{y} = - \omega_{m}^{3} \left( {\beta \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{y1}^{2} + \beta \eta_{M} \omega_{y1}^{2} + \beta \omega_{y1}^{2} } \right) + 2\beta \omega_{m} \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{y1}^{4} \hfill \\ c_{y1} = - \omega_{m}^{2} + \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{y1}^{2} + \eta_{M} \omega_{y1}^{2} ,d_{y1} = \beta \frac{{\eta_{M} }}{{\eta_{k} }}\omega_{y1}^{2} \omega_{m} + \beta \eta_{M} \omega_{y1}^{2} \omega_{m} , \hfill \\ d_{y2} = \beta \omega_{y1}^{2} \omega_{m} ,c_{y2} = \omega_{y1}^{2} ,p_{y} = - \omega_{m}^{2} + \omega_{y1}^{2} \hfill \\ \end{gathered}$$
(37)
$$\begin{gathered} \theta_{y1} = \arctan \frac{{b_{y} c_{y1} - a_{y} d_{y1} }}{{a_{y} c_{y1} + b_{y} d_{y1} }},\;\mu_{y11} = \sqrt {\frac{{c_{y1}^{2} + d_{y1}^{2} }}{{a_{y}^{2} + b_{y}^{2} }}} \hfill \\ \theta_{y2} = \arctan \frac{{b_{y} c_{y2} - a_{y} d_{y2} }}{{a_{y} c_{y2} + b_{y} d_{y2} }},\;\mu_{y12} = \sqrt {\frac{{c_{y2}^{2} + d_{y2}^{2} }}{{a_{y}^{2} + b_{y}^{2} }}} \hfill \\ \theta_{y3} = \arctan \frac{{b_{y} p_{y} - a_{y} d_{y2} }}{{a_{y} p_{y} + b_{y} d_{y2} }},\;\mu_{y22} = \sqrt {\frac{{p_{y}^{2} + d_{y2}^{2} }}{{a_{y}^{2} + b_{y}^{2} }}} \hfill \\ \end{gathered}$$
(38)
$$\begin{gathered} A_{y1} = \eta_{m} r\omega_{m}^{2} \sqrt {\mu_{y11}^{2} + \eta_{M}^{2} \mu_{y12}^{2} + 2\eta_{M} \mu_{y11} \mu_{y12} \cos \left[ {\varphi_{1} - \varphi_{2} - \theta_{y1} + \theta_{y2} } \right]} \hfill \\ \phi_{y1} = arctan\frac{{\left( {\mu_{y11} - \eta_{M} \mu_{y12} } \right)\sin \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y1} + \theta_{y2} }}{2}} \right)}}{{\left( {\mu_{y11} + \eta_{M} \mu_{y12} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y1} + \theta_{y2} }}{2}} \right)}}\quad \quad \quad \left( {\mu_{y11} + \eta_{M} \mu_{y12} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y1} + \theta_{y2} }}{2}} \right) > 0 \hfill \\ \phi_{y1} = \pi + arctan\frac{{\left( {\mu_{y11} - \eta_{M} \mu_{y12} } \right)\sin \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y1} + \theta_{y2} }}{2}} \right)}}{{\left( {\mu_{y11} + \eta_{M} \mu_{y12} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y1} + \theta_{y2} }}{2}} \right)}}\quad \quad \quad \left( {\mu_{y11} + \eta_{M} \mu_{y12} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y1} + \theta_{y2} }}{2}} \right) < 0 \hfill \\ \end{gathered}$$
(39)
$$\begin{gathered} A_{y2} = \eta_{m} \eta_{M} r\omega_{m}^{2} \sqrt {\mu_{y12}^{2} + \mu_{y22}^{2} + 2\mu_{y12} \mu_{y22} \cos (\varphi_{1} - \varphi_{2} - \theta_{y2} + \theta_{y3} )} \hfill \\ \phi_{y2} = \arctan \frac{{\left( {\mu_{y12} - \mu_{y22} } \right)\sin \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y2} + \theta_{y3} }}{2}} \right)}}{{\left( {\mu_{y12} + \mu_{y22} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y2} + \theta_{y3} }}{2}} \right)}}\quad \quad \quad \left( {\mu_{y12} + \mu_{y22} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y2} + \theta_{y3} }}{2}} \right) > 0 \hfill \\ \phi_{y2} = \pi + \arctan \frac{{\left( {\mu_{y12} - \mu_{y22} } \right)\sin \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y2} + \theta_{y3} }}{2}} \right)}}{{\left( {\mu_{y12} + \mu_{y22} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y2} + \theta_{y3} }}{2}} \right)}}\quad \quad \quad \left( {\mu_{y12} + \mu_{y22} } \right)\cos \left( {\frac{{\varphi_{1} - \varphi_{2} - \theta_{y2} + \theta_{y3} }}{2}} \right) < 0 \hfill \\ \end{gathered}$$
(40)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Hou, Y. Research on synchronization and steady-state responses of a two-body vibration system driven by two co-rotating eccentric rotors mounted on different bodies. Arch Appl Mech 94, 1359–1378 (2024). https://doi.org/10.1007/s00419-024-02579-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-024-02579-5

Keywords

Navigation