Skip to main content
Log in

Modes of Vibration of Single- and Double-Walled CNTs with an Attached Mass by a Non-local Shell Model

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

It is intended to investigate the modes of vibration of single-walled and double-walled carbon nanotubes with an attached mass, to gain knowledge useful for the application of CNTs for mass and cell detection. A related goal is the development and validation of a shell model that can be applied for the former purpose.

Methods

A p-version finite element method model based on Sanders–Koiter’s shell theory and considering the small size effects by employing Eringen’s non-local theory is employed. Van der Waals forces are included in the interlayer stiffness of DWCNTs. Concentrated attached masses are included through their inertia, which is affected by non-local terms. The convergence and validity of the models are tested by comparisons to Molecular Dynamics simulations and atomistic–continuum hybrid finite element analysis.

Results

Studies are conducted on the influence of the non-local parameter, which is calibrated for natural frequencies of different order and CNTs of different lengths. Critical values of length for which the non-local theory remains relevant depend upon the equivalent material and geometric properties employed, but more important is the verification that the non-local shell theory can be used to improve the accuracy of continuum CNT models. The dynamic behaviour of bridged SWCNTs and DWCNTs is studied, examining their applicability in mass detection devices.

Conclusion

The large influence a localised mass has on the mode shapes of vibration is illustrated. Sensitivity increases more significantly in lower length carbon nanotubes. Furthermore, it is found that SWCNTs have a higher sensitivity to attached concentrated masses than DWCNTs with similar diameter, making the former more appealing candidates for mass detection nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sumio Iijima (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58. https://doi.org/10.1038/354056a0 (issn: 1476-4687)

    Article  Google Scholar 

  2. Gibson Ronald F, Ayorinde Emmanuel O, Wen Y-F (2007) Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol 67(1):1–28. https://doi.org/10.1016/j.compscitech.2006.03.031. http://www.sciencedirect.com/science/article/pii/S026635380600131X (issn: 0266-3538)

  3. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress Polym Sci 36(7):914–944. https://doi.org/10.1016/j.progpolymsci.2010.11.004. http://www.sciencedirect.com/science/article/pii/S0079670010001243 (issn: 0079- 6700)

  4. Naik AK, Hanay MS, Hiebert WK, Feng XL, Roukes ML (2009) Towards single-molecule nanomechanical mass spectrometry. Nat Nanotechnol 4(7):445–450 https://doi.org/10.1038/nnano.2009.152 (issn: 1748-3395)

  5. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625. https://doi.org/10.1126/science.287.5453.622

  6. Waggoner Philip S, Craighead Harold G (2007) Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7(10):1238–1255. https://doi.org/10.1039/B707401H (issn: 1473-0197)

    Article  Google Scholar 

  7. Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG (2001) Single cell detection with micromechanical oscillators. J Vacuum Sci Technol 19(6):2825–2828. https://doi.org/10.1116/1.1421572. https://avs.scitation.org/doi/abs/10.1116/1.1421572

  8. Gupta A, Akin D, Bashir R (2004) Single virus particle mass detection using microresonators with nanoscale thickness. Appl Phys Lett 84(11):1976–1978. https://doi.org/10.1063/1.1667011 (issn:0003-6951)

    Article  Google Scholar 

  9. Goeders Karen M, Colton Jonathan S, Bottomley Lawrence A (2008) Microcantilevers: sensing chemical interactions via mechanical motion. Chem Rev 108(2):522–542. https://doi.org/10.1021/cr0681041 (issn:0009- 2665)

    Article  Google Scholar 

  10. Stachowiak Jeanne C, Yue M, Castelino K, Chakraborty A, Majumdar A (2006) Chemomechanics of surface stresses induced by DNA hybridization. Langmuir 22(1):263–268. https://doi.org/10.1021/la0521645 (issn: 0743- 7463)

  11. Kwon T, Park J, Yang J, Yoon DS, Na S, Kim C-W, Suh J-S, Huh Y-M, Haam S, Eom K (2009) Nanomechanical in situ monitoring of proteolysis of peptide by Cathepsin B. PloS One 4(7):e6248–e6248. https://doi.org/10.1371/journal.pone.0006248. https://pubmed.ncbi.nlm.nih.gov/19606222%20, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707113/ (issn: 1932- 6203)

  12. Chunyu Li, Tsu-Wei Chou (2004) Mass detection using carbon nanotube-based nanomechanical resonators. Appl Phys Lett 84(25):5246–5248. https://doi.org/10.1063/1.1764933 (issn: 0003-6951)

    Article  Google Scholar 

  13. Lassagne B, Garcia-Sanchez D, Aguasca A, Bachtold A (2008) Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett 8(11):3735–3738. https://doi.org/10.1021/nl801982v (PMID: 18939809)

  14. Jensen K, Kim K, Zettl A (2008) An atomicresolution nanomechanical mass sensor. Nat Nanotechnol 3:533–537. https://doi.org/10.1038/nnano.2008.200 (issn: 1748-3395)

    Article  Google Scholar 

  15. Chiu H-Y, Hung P, Postma HWCh, Bockrath M (2008) Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett 8(12):4342–4346. https://doi.org/10.1021/nl802181c (PMID: 19053791)

  16. Lassagne B, Bachtold A (2010) Carbon nanotube electromechanical resonator for ultrasensitive mass/force sensing. Comptes Rendus Physique 11(5):355–361. https://doi.org/10.1016/j.crhy.2010.06.006. https://www.sciencedirect.com/science/article/pii/S163107051000054X. (Optical properties of nanotubes, issn: 1631-0705)

  17. Farokhi H, Païdoussis MP, Misra AK (2018) Nonlinear behaviour and mass detection sensitivity of geometrically imperfect cantilevered carbon nanotube resonators. In: Communications in Nonlinear Science and Numerical Simulation vol 65, pp 272–298. https://doi.org/10.1016/j.cnsns.2018.05.013. https://www.sciencedirect.com/science/article/pii/S1007570418301588 (issn: 1007- 5704)

  18. Shaat M, Abdelkefi A (2017) Reporting the sensitivities and resolutions of CNT-based resonators for mass sensing. Mater Des 114:591–598. https://doi.org/10.1016/j.matdes.2016.11.104. https://www.sciencedirect.com/science/article/pii/S0264127516315064 (issn: 0264-1275)

  19. Besley Nicholas A (2020) Vibrational analysis of carbon nanotube-based nanomechanical resonators. J Phys Chem C 124(30):6714–16721. https://doi.org/10.1021/acs.jpcc.0c04998

    Article  Google Scholar 

  20. Arash B, Wang Q (2012) A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci 51(1):303–313. https://doi.org/10.1016/j.commatsci.2011.07.040. http://www.sciencedirect.com/science/article/pii/S0927025611004320 (issn: 0927-0256)

  21. Khademolhosseini F, Phani AS, Nojeh A, Rajapakse N (2012) Nonlocal continuum modeling and molecular dynamics simulation of torsional vibration of carbon nanotubes. IEEE Trans Nanotechnol 11(1):34–43. https://doi.org/10.1109/TNANO.2011.2111380 (issn: 1941-0085)

  22. Strozzi M, Smirnov VV, Manevitch LI, Milania M, Pellicano F (2016) Nonlinear vibrations and energy exchange of singlewalled carbon nanotubes. Circumferential flexural modes. J Sound Vib. https://doi.org/10.1016/j.jsv.2016.06.013

  23. Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101(2):024305. https://doi.org/10.1063/1.2423140 (issn: 0021-8979)

    Article  Google Scholar 

  24. Ansari R, Rouhi H, Sahmani S (2011) Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int J Mech Sci 53(9):786–792. https://doi.org/10.1016/j.ijmecsci.2011.06.010. http://www.sciencedirect.com/science/article/pii/S0020740311001299 (issn: 0020- 7403)

  25. Liu R, Wang L (2015) Vibration of cantilevered double-walled carbon nanotubes predicted by timoshenko beam model and molecular dynamics. Int J Comput Methods 12(04):1540017. https://doi.org/10.1142/S0219876215400174 (issn: 0219-8762)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bodily B, Sun C (2003) Structural and equivalent continuum properties of single-walled carbon nanotubes. Int J Mater Prod Technol 18:381–397. https://doi.org/10.1504/IJMPT.2003.002498

    Article  Google Scholar 

  27. Sakhaee-Pour A, Ahmadian MT, Vafai A (2009) Vibrational analysis of single-walled carbon nanotubes using beam element. Thin-Walled Struct 47(6):646–652. https://doi.org/10.1016/j.tws.2008.11.002. http://www.sciencedirect.com/science/article/pii/S0263823108002413 (issn: 0263-8231)

  28. Yan JW, He JB, Tong LH (2019) Longitudinal and torsional vibration characteristics of boron nitride nanotubes. J Vib Eng Technol 7:205–215. https://doi.org/10.1007/s42417-019-00113-4

    Article  Google Scholar 

  29. Strozzi M, Smirnov VV, Manevitch LI, Pellicano F (2018) Nonlinear vibrations and energy exchange of single-walled carbon nanotubes. Radial breathing modes. Compos Struct 184:613–632. https://doi.org/10.1016/j.compstruct.2017.09.108. http://www.sciencedirect.com/science/article/pii/S026382231732055X (issn: 0263-8223)

  30. Avramov KV (2018) Nonlinear vibrations characteristics of single-walled carbon nanotubes by nonlocal elastic shell model. Int J Non-Linear Mech 107:149–160. https://doi.org/10.1016/j.ijnonlinmec.2018.08.017. http://www.sciencedirect.com/science/article/pii/S0020746218303238 (issn: 0020-7462)

  31. Strozzi M, Manevitch LI, Pellicano F, Smirnov VV, Shepelev DS (2014) Low-frequency linear vibrations of single-walled carbon nanotubes: analytical and numerical models. J Sound Vib 333(13):2936–2957. https://doi.org/10.1016/j.jsv.2014.01.016. http://www.sciencedirect.com/science/article/pii/S0022460X14000601 (issn: 0022-460X)

  32. Ansari R, Rouhi H, Sahmani S (2012) Free vibration analysis of single- and double- vibrations of CNTs with attached masses 21 walled carbon nanotubes based on nonlocal elastic shell models. J Vib Control 20(5):670–678. https://doi.org/10.1177/1077546312463750 (issn: 1077-5463)

    Article  MATH  Google Scholar 

  33. Wang CY, Ru CQ, Mioduchowski A (2005) Free vibration of multiwall carbon nanotubes. J Appl Phys 97(11):114323. https://doi.org/10.1063/1.1898445 (issn: 0021-8979)

    Article  Google Scholar 

  34. Flügge W (1960) Stresses in shells. Springer, Berlin, p 1960

    Book  Google Scholar 

  35. Silvestre N, Wang CM, Zhang YY, Xiang Y (2011) Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Compos Struct 93(7):1683–1691. https://doi.org/10.1016/j.compstruct.2011.01.004. http://www.sciencedirect.com/science/article/pii/S0263822311000183 (issn: 0263-8223)

  36. Silvestre N (2012) On the accuracy of shell models for torsional buckling of carbon nanotubes. Eur J Mech 32:103–108. https://doi.org/10.1016/j.euromechsol.2011.09.005. http://www.sciencedirect.com/science/article/pii/S0997753811001379 (issn: 0997-7538)

  37. Wang Q, Varadan VK (2007) Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater Struct 16(1):178–190. https://doi.org/10.1088/0964-1726/16/1/022 (issn: 0964-1726 1361-665X)

    Article  Google Scholar 

  38. Cemal Eringen A (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710. https://doi.org/10.1063/1.332803 (issn: 0021- 8979)

    Article  Google Scholar 

  39. Hu Y-G, Liew KM, Wang Q, Hea XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J Mech Phys Solids 56(12):3475–3485. https://doi.org/10.1016/j.jmps.2008.08.010. http://www.sciencedirect.com/science/article/pii/S0022509608001452 (issn: 0022-5096)

  40. Yang Y, Lin Q, Guo R (2020) Axisymmetric wave propagation behavior in fluid conveying carbon nanotubes based on nonlocal fluid dynamics and nonlocal strain gradient theory. J Vib Eng Technol 8:773–780. https://doi.org/10.1007/s42417-019-00194-1

    Article  Google Scholar 

  41. Yan JW, Tong LH, Li C, Zhua Y, Wang ZW (2015) Exact solutions of bending deflections for nano-beams and nano-plates based on nonlocal elasticity theory. Compos Struct 125:304–313. https://doi.org/10.1016/j.compstruct.2015.02.017. https://www.sciencedirect.com/science/article/pii/S0263822315000938 (issn: 0263-8223)

  42. Amabili M (2008) Nonlinear vibrations and stability of shells and plates. Cambrigde University Press, New York

    MATH  Google Scholar 

  43. Chang T (2010) A molecular based anisotropic shell model for single-walled carbon nanotubes. J Mech Phys Solids 58(9):1422–1433. https://doi.org/10.1016/j.jmps.2010.05.004. http://www.sciencedirect.com/science/article/pii/S0022509610000943 (issn: 0022-5096)

  44. Chuaqui TRC (2016) Linear and nonlinear vibrations of single-layer graphene sheets. DEMec. MA thesis. Porto: Faculdade de Engenharia da Universidade do Porto

  45. He XQ, Kitipornchai S, Liew KM (2005) Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J Mech Phys Solids 53(2):303–326. https://doi.org/10.1016/j.jmps.2004.08.003. http://www.sciencedirect.com/science/article/pii/S0022509604001413 (issn: 0022-5096)

  46. Bardell NS (1989) The application of symbolic computing to the hierarchical finite element method. Int J Numer Methods Eng 28(5):1181–1204. https://doi.org/10.1002/nme.1620280513. https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620280513 (issn: 0029-5981)

  47. Han W, Petyt M, Hsiao K-M (1994) An investigation into geometrically nonlinear analysis of rectangular laminated plates using the hierarchical finite element method. Finite Elements Anal Des 18(1):273–288. https://doi.org/10.1016/0168-874X(94)90107-4. http://www.sciencedirect.com/science/article/pii/0168874X94901074 (issn:0168-874X)

  48. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511–2514. https://doi.org/10.1103/PhysRevLett.76.2511. https://link.aps.org/doi/10.1103/PhysRevLett.76.2511. (22 Eduardo Henrique Gonçalves, Pedro Ribeiro)

  49. Huang Y, Wu J, Hwang KC (2006) Thickness of graphene and single-wall carbon nanotubes. Phys Rev B 74:245413. https://doi.org/10.1103/PhysRevB.74.245413. https://link.aps.org/doi/10.1103/PhysRevB.74.245413

  50. Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891. https://doi.org/10.1016/0008-6223(95)00017-8. https://www.sciencedirect.com/science/article/pii/0008622395000178 (Nanotubes; issn: 0008-6223)

  51. Meirovitch L, Baruh H (1983) On the inclusion principle for the hierarchical finite element method. Int J Numer Methods Eng 19(2):281–291. https://doi.org/10.1002/nme.1620190209 (issn: 0029-5981)

    Article  MathSciNet  MATH  Google Scholar 

  52. Eduardo Henrique Lopes Marinho Gonçalves (2020) Vibrations of carbon nanotubes by a nonlocal shell model. DEMec. MA thesis. Porto: Faculdade de Engenharia da Universidade do Porto

  53. Gupta SS, Bosco FG, Batra RC (2010) Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Comput Mater Sci 47(4):1049–1059. https://doi.org/10.1016/j.commatsci.2009.12.007. http://www.sciencedirect.com/science/article/pii/S092702560900456X (issn: 0927-0256)

  54. Ribeiro P, Thomas O (2017) Nonlinear modes of vibration and internal resonances in nonlocal beams. J Comput Nonlinear Dyn 12(3):031017. https://asmedigitalcollection.asme.org/computationalnonlinear/article-pdf/12/3/031017/6109267/cnd_012_03_031017.pdf. https://doi.org/10.1115/1.4035060 (issn: 1555-1415)

  55. Alves M, Ribeiro P (2017) Non-linear modes of vibration of Timoshenko nanobeams under electrostatic actuation. Int J Mech Sci 130:88–202. https://doi.org/10.1016/j.ijmecsci.2017.06.003. https://www.sciencedirect.com/science/article/pii/S0020740317300383 (issn: 0020-7403)

  56. Pellicano F (2007) Vibrations of circular cylindrical shells: theory and experiments. J Sound Vib 303(1):154–170. https://doi.org/10.1016/j.jsv.2007.01.022. http://www.sciencedirect.com/science/article/pii/S0022460X07000247 (issn: 0022-460X)

  57. Ansari R, Ajori S, Arash B (2012) Vibrations of single- and double-walled carbon nanotubes with layerwise boundary conditions: a molecular dynamics study. Curr Appl Phys 12(3):707–711. https://doi.org/10.1016/j.cap.2011.10.007. http://www.sciencedirect.com/science/article/pii/S1567173911005384 (issn: 1567-1739)

Download references

Acknowledgements

This research was carried out in the framework of project N\({^{\circ }}\) 030348, POCI-01-0145-FEDER-030348, “Laminated composite panels reinforced with carbon nanotubes and curvilinear carbon fibres for enhanced vibration and flutter characteristics”, funded by FEDER, through Programa Operacional Competitividade e Internacionalização – COMPETE 2020, and by National Funds (PIDDAC), through FCT/MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Ribeiro.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, E.H., Ribeiro, P. Modes of Vibration of Single- and Double-Walled CNTs with an Attached Mass by a Non-local Shell Model. J. Vib. Eng. Technol. 10, 375–393 (2022). https://doi.org/10.1007/s42417-021-00381-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00381-z

Keywords

Navigation