Skip to main content
Log in

Establishing detection maps for carbon nanotube mass sensors: molecular versus continuum mechanics

  • Review Article
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, the mass-sensing ability and the corresponding detection efficiency of a fully clamped single-walled carbon nanotube (SWCNT) are investigated through a free vibration analysis, by utilizing mainly a molecular mechanics (MM) formulation and secondarily a continuum mechanics (CM) analytical approximation. The MM method is based on representing the SWCNT as a three-dimensional (3D) finite element frame of point masses and linear springs, while the CM one is grounded on the Euler–Bernoulli beam theory. The overall effort is focused on obtaining detection maps, based on natural frequency data which are capable of leading to the straightforward identification of an unknown mass attached to the external surface of the candidate SWCNT sensor. For this reason, the SWCNT relative natural frequency shifts due to the mass addition, regarding specific modes of vibration and for a variety of mass magnitude and position combinations, are calculated beforehand. Then, the magnitude as well as the position of the added mass may be graphically found by superposing the arisen relative natural frequency shift variations in common contour diagrams. Some results from the open literature are utilized to confirm the predictive performance of the proposed MM method concerning the free vibration of pure SWCNTs, while the MM and CM established detection maps are set in contrast to examine whether a mass nanosensor may be satisfactorily treated in a continuum manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X.-F., Tang, G.-J., Shen, Z.-B., Lee, K.Y.: Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Ultrasonics 55(1), 75–84 (2015)

    Article  Google Scholar 

  2. Park, E.J., Brasuel, M., Behrend, C., Philbert, M.A., Kopelman, R.: Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal. Chem. 75(15), 3784–3791 (2003)

    Article  Google Scholar 

  3. Liao, X., Liao, Q., Zhang, Z., Yan, X., Liang, Q., Wang, Q., Li, M., Zhang, Y.A.: Highly stretchable ZnO@fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv. Funct. Mater. 26(18), 3074–3081 (2016). 2016

    Article  Google Scholar 

  4. He, R.X., Lin, P., Liu, Z.K., Zhu, H.W., Zhao, X.Z., Chan, H.L.W., Yan, F.: Solution-gated graphene field effect transistors integrated in microfluidic systems and used for flow velocity detection. Nano Lett. 12(3), 1404–1409 (2012)

    Article  Google Scholar 

  5. Chen, D., Chen, D., Zhang, T., Lawo, M., Gu, Y., Zhang, Y.: A smart scarf for pulse signal monitoring using a flexible pressure nanosensor. Proc. Int. Symp. Wearable Comput. ISWC 2666714, 237–242 (2014)

    Google Scholar 

  6. Valente, J., Ou, J.-Y., Plum, E., Youngs, I.J., Zheludev, N.I.: A magneto-electro-optical effect in a plasmonic nanowire material. Nat. Commun. 6, 7021 (2015)

    Article  Google Scholar 

  7. Yang, W., Ratinac, K.R., Ringer, S.R., Thordarson, P., Gooding, J.J., Braet, F.: Carbon nanomaterials in biosensors: should you use nanotubes or graphene. Angew. Chem. Int. Ed. 49(12), 2114–2138 (2010)

    Article  Google Scholar 

  8. Artiles, M.S., Rout, C.S., Fisher, T.S.: Graphene-based hybrid materials and devices for biosensing. Adv. Drug Deliv. Rev. 63(14–15), 1352–60 (2011)

    Article  Google Scholar 

  9. Varghese, S.H., Nair, R., Nair, B.G., Hanajiri, T., Maekawa, T., Yoshida, Y., Kumar, D.S.: Sensors based on carbon nanotubes and their applications: a review. Curr. Nanosci. 6(4), 331–346 (2010)

    Article  Google Scholar 

  10. Jensen, K., Kim, K., Zettl, A.: An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3(9), 533–537 (2008)

    Article  Google Scholar 

  11. Chiu, H.Y., Hung, P., Postma, H.W.C., Bockrath, M.: Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 8(12), 4342–4346 (2008)

    Article  Google Scholar 

  12. Chaste, J., Eichler, A., Moser, J., Ceballos, G., Rurali, R., Bachtold, A.: A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7(5), 301–304 (2012)

    Article  Google Scholar 

  13. Rafiee, R., Moghadam, R.M.: On the modeling of carbon nanotubes: a critical review. Compos. Part B Eng. 56, 435–449 (2014)

    Article  Google Scholar 

  14. Li, C., Chou, T.-W.: Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B Condens. Matter Mater. Phys. 68(7), 734051–734053 (2003)

    Article  Google Scholar 

  15. Fakhrabadi, M.M.S., Amini, A., Rastgoo, A.: Vibrational properties of two and three junctioned carbon nanotubes. Comput. Mater. Sci. 65, 411–425 (2012)

    Article  Google Scholar 

  16. Fakhrabadi, M.M.S., Amini, A., Reshadi, F., Khani, N., Rastgoo, A.: Investigation of buckling and vibration properties of hetero-junctioned and coiled carbon nanotubes. Comput. Mater. Sci. 73, 93–112 (2013)

    Article  Google Scholar 

  17. Fakhrabadi, M.M.S., Khani, N., Pedrammehr, S.: Vibrational analysis of single-walled carbon nanocones using molecular mechanics approach. Phys. E Low-Dimens. Syst. Nanostruct. 44(7–8), 1162–1168 (2012)

    Article  Google Scholar 

  18. Chowdhury, R., Adhikari, S., Wang, C.Y., Scarpa, F.: A molecular mechanics approach for the vibration of single-walled carbon nanotubes. Comput. Mater. Sci. 48(4), 730–735 (2010)

    Article  Google Scholar 

  19. Ansari, R., Rouhi, H., Rajabiehfard, R.: Free vibration analysis of single-walled carbon nanotubes using semi-analytical finite element. Int. J. Comput. Methods Eng. Sci. Mech. 13, 202–209 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kim, M.H., Seo, S., Liu, W.K., Lim, B.S., Choi, J.B., Kim, M.K.: A modal analysis of carbon nanotube using elastic network model. J. Mech. Sci. Technol. 26(11), 3433–3438 (2012)

    Article  Google Scholar 

  21. Annin, B.D., Alekhin, V.V., Babichev, A.V., Korobeynikov, S.N.: Molecular mechanics method applied to problems of stability and natural vibrations of single-layer carbon nanotubes. Mech. Solids 47(5), 544–559 (2012)

    Article  Google Scholar 

  22. Lee, J.H., Lee, B.S.: Modal analysis of carbon nanotubes and nanocones using FEM. Comput. Mater. Sci. 51(1), 30–42 (2012)

    Article  Google Scholar 

  23. Kiani, K.: Nonlocal continuous models for forced vibration analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes. Phys. E Low-Dimens. Syst. Nanostruct. 60, 229–245 (2014)

    Article  Google Scholar 

  24. Imani Yengejeh, S., Delgado, J.M.P.Q., De Lima, A.G.B., Öchsner, A.: Numerical simulation of the vibration behavior of curved carbon nanotubes. Adv. Mater. Sci. Eng. 2014, 815340 (2014)

    Article  Google Scholar 

  25. Imani Yengejeh, S., Akbar Zadeh, M., Öchsner, A.: Numerical modeling of eigenmodes and eigenfrequencies of hetero-junction carbon nanotubes with pentagon-heptagon pair defects. Comput. Mater. Sci. 92, 76–83 (2014)

    Article  Google Scholar 

  26. Motamedi, M., Mashhadi, M.M., Rastgoo, A.: Vibration behavior and mechanical properties of carbon nanotube junction. J. Comput. Theor. Nanosci. 10(4), 1033–1037 (2013)

    Article  Google Scholar 

  27. Gajbhiye, S.O., Singh, S.P.: Vibration characteristics of open- and capped-end single-walled carbon nanotubes using multi-scale analysis technique incorporating Tersoff-Brenner potential. Acta Mech. 226(11), 3565–3586 (2015)

    Article  MathSciNet  Google Scholar 

  28. Askari, H., Esmailzadeh, E., Barari, A.: A unified approach for nonlinear vibration analysis of curved structures using non-uniform rational B-spline representation. J. Sound Vib. 353, 292–307 (2015)

    Article  Google Scholar 

  29. Patel, A.M., Joshi, A.Y.: Evaluating the vibrational characteristics of double walled carbon nanotubes with pinhole defects. Curr. Nanosci. 11(3), 371–378 (2015)

    Article  Google Scholar 

  30. Amjadipour, M., Dao, D.V., Motta, N.: Vibration analysis of initially curved single walled carbon nanotube with vacancy defect for ultrahigh frequency nanoresonators. Microsyst. Technol. 22(5), 1115–1120 (2016)

    Article  Google Scholar 

  31. Fakhrabadi, M.M.S., Samadzadeh, M., Rastgoo, A., Yazdi, M.H., Mashhadi, M.M.: Vibrational analysis of carbon nanotubes using molecular mechanics and artificial neural network. Phys. E Low-Dimens. Syst. Nanostruct. 44(3), 565–578 (2011)

    Article  Google Scholar 

  32. Ouakad, H.M., Younis, M.I.: Dynamic response of slacked single-walled carbon nanotube resonators. Nonlinear Dyn. 67(2), 1419–1436 (2012)

    Article  MathSciNet  Google Scholar 

  33. Ouakad, H.M., Younis, M.I.: Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation. J. Sound Vib. 330(13), 3182–3195 (2011)

    Article  Google Scholar 

  34. Joshi, A.Y., Sharma, S.C., Harsha, S.P.: Effect of chirality and atomic vacancies on dynamics of nanoresonators based on SWCNT. Sens. Rev. 31(1), 47–57 (2011)

    Article  Google Scholar 

  35. Patel, A.M., Joshi, A.Y.: Influence of atomic vacancies on the dynamic characteristics of nanoresonators based on double walled carbon nanotube. Phys. E Low-Dimens. Syst. Nanostruct. 70, 90–100 (2015)

    Article  Google Scholar 

  36. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic table force-field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  37. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  38. Babakov, I.M.: Theory of Vibrations. Nauka, Leningrad (1968)

    Google Scholar 

  39. Jafari, A., Shirvani Shah-Enayati, S., Atai, A.A.: Size dependency in vibration analysis of nano plates; one problem, different answers. Eur. J. Mech. A/Solids 59, 124–139 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios I. Giannopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannopoulos, G.I., Georgantzinos, S.K. Establishing detection maps for carbon nanotube mass sensors: molecular versus continuum mechanics. Acta Mech 228, 2377–2390 (2017). https://doi.org/10.1007/s00707-017-1812-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1812-9

Navigation