Skip to main content
Log in

Keramische Beschichtungen für Hochtemperatur-Anwendungen

  • Anwendungen und Verfahren
  • Published:
Keramische Zeitschrift

Abstract: Ceramic coatings are required in high-temperature applications for the protection of components under extreme operating conditions. For effective protection, the coating material must meet complex requirements. The development of a coating and its development phases are presented in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bild 1
Bild 2
Bild 3
Bild 4
Bild 5
Bild 6

Similar content being viewed by others

Literaturhinweise

  1. Richards, B.T.; Wadley, H.N.G.: Plasma spray deposition of tri-layer environmental barrier coatings [online]. J. of the Europ. Ceram. Soc. 34 (2014) [12] 3069-3083. Available from: 10.1016/j.jeurceramsoc.2014.04.027.

  2. Eaton, H.E.; Linsey, G.D.: Accelerated oxidation of SiC CMC's by water vapor and protection via environmental barrier coating approach [online]. J. of the Europ. Ceram. Soc. 22 (2002) [14-15] 2741-2747. Available from: 10.1016/S0955-2219(02)00141-3.

  3. Pint, B.A.; Stack, P.; Kane, K.A.: Predicting EBC Temperature Limits for Industrial Gas Turbines. Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines: Amer. Soc. of Mechanical Engineers, 2021.

  4. Bansal, N.P.; Lamon, J.: Eds. Ceramic matrix composites. Materials, modeling and technology. Hoboken, Wiley, 2015, 9781118231166.

  5. Chawla, K.K.: Ceramic Matrix Composites. Boston, MA, s.l.: Springer US, 1993, 9781475722185.

  6. Nöth, A.; Rüdinger, A.; Pritzkow, W.: Oxide ceramic matrix composites-Manufacturing, machining, properties and industrial applications. Ceramic Applications 3 (2015) [2] 48-54.

  7. Wieckert, Ch.; Tzouganatos, N.; Steinfeld, A.: Development of a 5 kWth windowless packedbed reactor for high-temperature solar thermochemical processing: Author(s), 2018, p. 130016.

  8. Lee, K.N.; Eldridge, J.I.; Robinson, R.C.: Residual Stresses and Their Effects on the Durability of Environmental Barrier Coatings for SiC Ceramics [online]. J. of the Amer. Ceram. Soc. 88 (2005) [12)] 3483-3488. Available from: 10.1111/j.1551-2916.2005.00640.x.

  9. Lee, K.N.; Miller, R.A.: Development and environmental durability of mullite and mullite/YSZ dual layer coatings for SiC and Si3N4 ceramics [online]. Surface and Coatings Technology 86-87 (1996) [3] 142-148. Available from: 10.1016/S0257-8972(96)03074-5.

  10. Hardwicke, C.U.; Lau, Y.-C.: Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation [online]. A Review. J. of Thermal Spray Technology 22 (2013) [5] 564-576. Available from: 10.1007/s11666-013-9904-0.

  11. Tejero-Martin, D.; Bennet, C.; Hussain, T.: A review on environmental barrier coatings [online]. History, current state-of-the-art and future developments. J. of the Europ. Ceram. Soc. 41 (2021) [3] 1747-1768. Available from: 10.1016/j.jeurceramsoc.2020.10.057.

  12. Lee, K.N. Environmental Barrier Coatings for SiCf/SiC. In: Narottam P. Bansal and Jacques Lamon, eds. Ceramic matrix composites. Materials, modeling and technology. Hoboken, Wiley, 2015, p. 430-451.

  13. Bo, B.; Kattner, U.R.; Sigli, Ch.; Stratmann,M.; Le Tellier, R.; Palumbo, M.; Fries, S.G.: The OpenCalphad thermodynamic software interface [online]. Computational materials science 125 (2016) 88-196. Available from: 10.1016/j.com¬matsci.2016.08.045.

  14. GTT TECHNOLOGIES. The ab initio materials project (AIMP) v4.0 database, 27.01. 2021.

  15. ANSYS INC. Ansys Granta Selector [software]. 2021 [accessed 06.07.2021]. Available from: https://www.ansys.com/products/materials/ grantaselector.

  16. Raether, F.: Thermische Eigenschaften technischer Keramiken. In: Wolfgang Kollenberg, ed. Technische Keramik. Grundlagen - Werkstoffe - Verfahrenstechnik. Essen, Vulkan, 2018, p. 84-107.

  17. Pirkelmann, S.; Seifert, G.; Raether, F.: Towards Top-Down Material Design of Multi-Phase Ceramics. Open Ceramics, 2021, www.sciencedirect.com/science/article/pii/S2666539521001577.

  18. Seifert, G.; Raether, F.; Baber, J.: A New Device for Measuring Hot Thermal Shock, Thermal Cycling and Other High Temperature Properties of Refractories. Refractories Worldforum 10 (2018) [1] 77-80.

  19. Raether, F.; Baber, J.; Friedrich, H.: Thermal Management of Heating Processes-Measuring Heat Transfer Properties. Refractories Worldforum 11 (2019) [2] 59-65.

  20. Fraunhofer-Center HTL: TOM_chem [online] [viewed 24 November 2021]. Available from: https://www.htl.fraunhofer.de/en/FocusOfResearch/characterisation/thermooptical_measuring_devices_tom/thermooptical_measuring_device_tomchem.html

  21. Raether, F.; Seifert, G.: Integrated Computational Ceramics Engineering an Approach to Radically Reduce Time-to-Market. cfi/Ber. DKG 95 (2018) [11/12] E 21-E 27.

Download references

Danksagung

Die Autoren bedanken sich für die finanzielle Unterstützung durch den Projektträger, dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) des BMWi im Projekt Ker_TwK (FKZ 20T1724D), und beim Bayerischen Wirtschaftsministerium für die Finanzierung des Projekts DiMaWert.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, J., Nöth, A., Vogt, J. et al. Keramische Beschichtungen für Hochtemperatur-Anwendungen. Keram. Z. 74, 24–29 (2022). https://doi.org/10.1007/s42410-022-0564-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42410-022-0564-x

Navigation