Skip to main content

Eurypsychrophilic Pseudomonas spp. isolated from Venezuelan tropical glaciers as promoters of wheat growth and biocontrol agents of plant pathogens at low temperatures

Abstract

Andean tropical glaciers are disappearing rapidly and, consequently, the microbes immured in these frozen environments will be lost forever. Some of these microbes are thought to be potentially useful to develop biotechnological products or processes. Among these microbes, plant-growth promoting (PGP) bacteria have been proposed as valuable tools to develop cold-active biofertilizers and/or biopesticides. A few years ago, we hypothesized that bacteria immured within glacial ice could be effective in promoting plant growth and/or in protecting plants from pathogen infection, at low temperatures. In this study, we aimed at testing some of these traits, with a suitable plant model (Triticum aestivum). In the present study, from a collection of bacteria isolated from Venezuelan tropical glaciers, we selected four Pseudomonas isolates and tested their PGP effects at low temperatures, both in vitro and on wheat plantlets. The isolates grew well over a wide range of low temperatures and were thus classified as eurypsychrophilic. They also displayed well-known PGP traits: solubilization of inorganic phosphates, production of phytohormones and antagonism against a phytopathogenic oomycete (Pythium ultimum). Inoculation of T. aestivum seeds with some of these Pseudomonas spp. isolates promoted a significant elongation of their roots and shoots. This was also the case when wheat plantlets were grown in sterile sand or soil, at 15 °C. Inoculation of wheat seeds also protected plantlets against the damage caused by P. ultimum. Together, our results suggest that some of these Pseudomonas spp. isolates could act as cold-active biofertilizers and/or biocontrol agents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdul-Baki AA, Anderson JD (1973) Vigor determination in Soybean seed by multiple criteria. Crop Sci 13:630–633

    Article  Google Scholar 

  2. Alström S, Burns RG (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol Fertil Soils 7:232–238

    Article  Google Scholar 

  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  4. Ansari FA, Ahmad I (2019) Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci Rep. https://doi.org/10.1038/s41598-019-40864-4 (Article number: 4547)

    Article  Google Scholar 

  5. Antoun H, Prévost D (2006) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Amsterdam, pp 1–38

    Google Scholar 

  6. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  7. Balcázar W, Rondón J, Rengifo M, Ball MM, Melfo A, Gómez W, Yarzábal LA (2015) Bioprospecting glacial ice for plant growth promoting bacteria. Microbiol Res 177:1–7. https://doi.org/10.1016/j.micres.2015.05.001

    Article  Google Scholar 

  8. Ball MM, Gómez W, Magallanes X, Rosales R, Melfo A, Yarzábal LA (2014) Bacteria recovered from a high-altitude, tropical glacier in Venezuelan Andes. World J Microbiol Biotechnol 30:931–941. https://doi.org/10.1007/s11274-013-1511-1

    Article  CAS  Google Scholar 

  9. Berríos G, Cabrera G, Gidekel M et al (2013) Characterization of a novel Antarctic plant growth-promoting bacterial strain and its interaction with Antarctic hair grass (Deschampsia antarctica Desv). Polar Biol 36:349–362

    Article  Google Scholar 

  10. Bidle KD, Lee SH, Marchant DR, Falkowski PG (2007) Fossil genes and microbes in the oldest ice on Earth. PNAS 104(33):13455–13460. https://doi.org/10.1073/pnas.0702196104

    Article  CAS  Google Scholar 

  11. Bisht SC, Mishra PK, Joshi GK (2013) Genetic and functional diversity among root-associated psychrotrophic Pseudomonad’s isolated from the Himalayan plants. Arch Microbiol 195:605–615

    Article  CAS  Google Scholar 

  12. Braun C, Bezada M (2013) The history and disappearance of glaciers in Venezuela. J Lat Am Geogr 12:85–124

    Article  Google Scholar 

  13. Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic-acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    CAS  Google Scholar 

  14. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

    Article  CAS  Google Scholar 

  15. D’Elia T, Veerapaneni R, Rogers SO (2008) Isolation of microbes from Lake Vostok accretion ice. Appl Environ Microbiol 74:4962–4965

    Article  CAS  Google Scholar 

  16. Daayf F, Adam L, Fernando WGD (2003) Comparative screening of bacteria for biological control of potato late blight (strain US-8), using in vitro, detached-leaves, and whole-plant testing systems. Can J Plant Pathol 25:276–284

    Article  Google Scholar 

  17. De Curtis F, Lima G, Vitullo D, De Cicco V (2010) Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Prot 29:663–670

    Article  Google Scholar 

  18. Edwards A (2015) Coming in from the cold: potential microbial threats from the terrestrial cryosphere. Front Earth Sci 3:12. https://doi.org/10.3389/feart.2015.00012

    Article  Google Scholar 

  19. Egamberdiyeva D, Höflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35:973–978

    Article  CAS  Google Scholar 

  20. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  21. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401 (Article ID 963401)

    Article  Google Scholar 

  22. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  23. Haas D, Keel C, Reimmann C (2002) Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie Van Leeuwenhoek 81:385–395

    Article  CAS  Google Scholar 

  24. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  Google Scholar 

  25. Hoagland DR, Arnon DI (1938) The water culture method for growing plants without soil. Calif Agric Exp Station Circ 347:32

    Google Scholar 

  26. Katiyar V, Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:163–168

    Article  CAS  Google Scholar 

  27. Kim H-J, Jeun Y-C (2006) Resistance Induction and enhanced tuber production by pre-inoculation with bacterial strains in potato plants against Phytophthora infestans. Mycobiology 34:67–72

    Article  CAS  Google Scholar 

  28. Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugata: a suitable bioinoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39:3093–3100

    Article  CAS  Google Scholar 

  29. Lessie TG, Phibbs PV (1984) Alternative pathways of carbohydrate utilization in pseudomonads. Annu Rev Microbiol 38:359–388

    Article  CAS  Google Scholar 

  30. Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EM, Zaleska I (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395

    Article  Google Scholar 

  31. Liu Y, Priscu J, Yao T, Vick-Majors T, Michaud A, Sheng L (2019) Culturable bacteria isolated from seven high-altitude ice cores on the Tibetan Plateau. J Glaciol 65:29–38. https://doi.org/10.1017/jog.2018.86

    Article  Google Scholar 

  32. Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  Google Scholar 

  33. Luján AM, Gómez P, Buckling A (2015) Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol Lett 11:20140934. https://doi.org/10.1098/rsbl.2014.0934

    Article  Google Scholar 

  34. Mavrodi OV, Walter N, Elateek S, Taylor CG, Okubara PA (2012) Suppression of Rhizoctonia and Pythium root rot of wheat by new strains of Pseudomonas. Biol Control 62:93–102

    Article  Google Scholar 

  35. Meyer JB, Lutz MP, Frapolli M, Péchy-Tarr M, Rochat L, Keel C, Défago G, Maurhofer M (2010) Interplay between wheat cultivars, biocontrol Pseudomonads and soil. Appl Env Microbiol 76:6196–6204

    Article  CAS  Google Scholar 

  36. Milus EA, Rothrock CS (1997) Efficacy of bacterial seed treatments for controlling Pythium root rot of winter wheat. Plant Dis 81:180–184

    Article  CAS  Google Scholar 

  37. Mishra PK, Mishra S, Selvakumar G, Bisht SC, Kundu S, Bisht JK, Gupta HS (2008) Characterization of a psychrotrophic plant growth promoting Pseudomonas PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:1–8

    Article  Google Scholar 

  38. Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313

    Article  CAS  Google Scholar 

  39. Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193:497–513. https://doi.org/10.1007/s00203-011-0693-x

    Article  CAS  Google Scholar 

  40. Moreno R, Rojo F (2014) Features of pseudomonads growing at low temperatures: another facet of their versatility. Environ Microbiol Rep 6:417–426

    Article  CAS  Google Scholar 

  41. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  42. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  Google Scholar 

  43. Niehus R, Picot A, Oliveira NM, Mitri S, Foster KR (2017) The evolution of siderophore production as a competitive trait. Evolution 71:1443–1455

    Article  CAS  Google Scholar 

  44. Pandey A, Trivedi P, Kumar B, Chaurasia B, Singh S, Palni LMS (2004) Development of microbial inoculants for enhancing plant performance in the mountains. In: Reddy MS, Kumar S (eds) Biotechnological approaches for sustainable development. Allied Publishers, New Delhi, pp 13–20

    Google Scholar 

  45. Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characteristics of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107

    Article  CAS  Google Scholar 

  46. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  Google Scholar 

  47. Paulin MM, Filion M (2013) Engineering the rhizosphere for agricultural and environmental sustainability. In: Gupta VK, Schmoll M, Maki M, Tuohy M, Mazutti MA (eds) Applications of microbial engineering. CRC Press, Boca Raton, pp 251–271. https://doi.org/10.1201/b15250-10

    Chapter  Google Scholar 

  48. Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  49. Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci 359:907–918. https://doi.org/10.1098/rstb.2003.1384

    Article  CAS  Google Scholar 

  50. Priscu J, Christner B (2004) Earth’s Icy biosphere. In: Bull A (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 130–145. https://doi.org/10.1128/9781555817770.ch13

    Chapter  Google Scholar 

  51. Priscu JC, Christner BC, Foreman CM, Royston-Bishop G (2007) Biological material in ice cores. Encycl Quat Sci 2:1156–1166

    Google Scholar 

  52. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  Google Scholar 

  53. Rabatel A, Francou B, Soruco A, Gómez J, Cáceres B, Ceballos JL, Basantes R et al (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102

    Article  Google Scholar 

  54. Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G, Sutra L, Moënne-Loccoz Y (2011) Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34:180–188. https://doi.org/10.1016/j.syapm.2010.10.005

    Article  CAS  Google Scholar 

  55. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  Google Scholar 

  56. Rondón J, Gómez W, Ball MM, Melfo A, Rengifo M, Balcázar W, Dávila-Vera D, Balza-Quintero A, Mendoza-Briceño RV, Yarzábal LA (2016) Diversity of culturable bacteria recovered from Pico Bolívar’s glacial and subglacial environments, at 4950 m, in Venezuelan tropical Andes. Can J Microbiol 62:1–14. https://doi.org/10.1139/cjm-2016-0172

    Article  CAS  Google Scholar 

  57. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453. https://doi.org/10.1104/pp.116.2.447

    Article  CAS  Google Scholar 

  58. Scherwinski K, Grosch R, Berg G (2008) Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol Ecol 64:106–116

    Article  CAS  Google Scholar 

  59. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  60. Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta HS (2009) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245

    Article  CAS  Google Scholar 

  61. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135

    Article  CAS  Google Scholar 

  62. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Venugopalan R, Bisht JK, Bhatt JC, Gupta HS (2013) Rock phosphate solubilization by psychrotolerant Pseudomonas spp. and their effect on lentil growth and nutrient uptake under polyhouse conditions. Ann Microbiol 63:1353–1362

    Article  CAS  Google Scholar 

  63. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680

    Article  CAS  Google Scholar 

  64. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a001438

    Article  Google Scholar 

  65. Spiers AJ, Buckling A, Rainey PB (2000) The causes of Pseudomonas diversity. Microbiology 146:2345–2350

    Article  CAS  Google Scholar 

  66. Trivedi P, Pandey A (2007) Low temperature phosphate solubilization and plant growth promotion by psychrotrophic bacteria, isolated from Indian Himalayan Region. Res J Microbiol 2:454–461. https://doi.org/10.3923/jm.2007.454.461

    Article  Google Scholar 

  67. Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production and plant growth at lower temperatures. Curr Microbiol 56:140–144

    Article  CAS  Google Scholar 

  68. Trivedi P, Pandey A, Palni LMS (2005) Carrier based formulations of plant growth promoting bacteria suitable for use in the colder regions. World J Microbiol Biotechnol 21:941–945

    Article  Google Scholar 

  69. Trivedi P, Kumar B, Pandey A, Palni LMS (2007) Growth promotion of rice by phosphate solubilizing bioinoculants in a Himalayan location. In: Velazquez E, Rodriguez-Barrueco C (eds) Proceedings books of first international meeting on microbial phosphate solubilization. Kluwer Academic Publishers, Amsterdam, pp 291–299

    Chapter  Google Scholar 

  70. Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  71. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00356

    Article  Google Scholar 

  72. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. https://doi.org/10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  73. Vuille M, Carey M, Huggel C, Buytaert W, Rabatel A, Jacobsen D, Soruco A et al (2018) Rapid decline of snow and ice in the tropical Andes—impacts, uncertainties and challenges ahead. Earth Sci Rev 176:195–213

    Article  Google Scholar 

  74. Weller DM, Cook RJ (1986) Increased growth of wheat by seed treatments with fluorescent pseudomonads, and implications of Pythium control. Can J Plant Pathol 8:328–334

    Article  Google Scholar 

  75. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323

    Article  CAS  Google Scholar 

  76. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693. https://doi.org/10.1016/j.jbiosc.2014.11.006

    Article  CAS  Google Scholar 

  77. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108. https://doi.org/10.1007/s11274-014-1768-z

    Article  CAS  Google Scholar 

  78. Yan ZN, Reddy MS, Ryu CM, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333

    Article  CAS  Google Scholar 

  79. Yarzábal LA (2014) Cold-tolerant phosphate-solubilizing microorganisms and agriculture development in mountainous regions of the world. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Cham, pp 113–135

    Google Scholar 

  80. Yarzábal LA, Monserrate L, Buela L, Chica E (2018) Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biol 41:2343–2354

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Silvia Restrepo (Universidad de Los Andes, Colombia) is grateful acknowledged for its help in sequencing some of the 16S rRNA genes presented in this manuscript. We also thank Dr. Stéfano Torracchi for its assistance in producing some of the graphics included in this work. We are grateful to Dr. Eduardo Chica for its comments and suggestions. We finally thank our colleagues from the following laboratories: Laboratorios de Enzimología de Parásitos, Laboratorio de Fitobiotecnología y Laboratorio de Biología de Parásitos de la (Facultad de Ciencias, Universidad de Los Andes, Venezuela). This work was partially financed by Fondo Nacional de Ciencias, Tecnología e Innovación (FONACIT) Project No. 2011001187. JR was the beneficiary of a ULA Plan II scholarship (Universidad de Los Andes, Venezuela).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luis Andrés Yarzábal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rondón, J.J., Ball, M.M., Castro, L.T. et al. Eurypsychrophilic Pseudomonas spp. isolated from Venezuelan tropical glaciers as promoters of wheat growth and biocontrol agents of plant pathogens at low temperatures. Environmental Sustainability 2, 265–275 (2019). https://doi.org/10.1007/s42398-019-00072-2

Download citation

Keywords

  • Andes Mountains
  • Tropical glaciers
  • Plant-growth promoting bacteria
  • Pseudomonas
  • Eurypsychrophiles
  • Biocontrol agents