Skip to main content
Log in

Multiplex PCR based detection method for Venturia species infecting pome and stone fruits

  • Research Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

There are about 290 Venturia species listed in the mycobank database. Among them, a few are important and cause notable damage to pome and stone fruits. The most important Venturia spp. are V. inaequalis (apple scab), V. pyrina (pear scab), and V. carpophila (peach and almond scab). Species characterization in the genus Venturia is difficult because of overlapping morphological characteristics. It is necessary to develop sensitive and robust detection tools for the important Venturia species. Thirty-seven primers from V. inaequalis, V. pyrina, and V. carpophila genomes were designed. Many primers showed cross transferability and a few failed to generate any PCR amplicon. The pathogens V. inaequalis, V. pyrina, and V. carpophila are detected using Vi1, Pr3, and C4 primers, respectively. The Venturia inaequalis specific primer (Vi1) can also detected apple scab infection in the leaves. These species-specific primers were analyzed for the simultaneous detection of three Venturia spp. in a multiplex PCR. Real time PCR showed that these primers were able to detect the target DNA up to 0.001 ng concentration. The present study was conducted for the first time to develop species-specific primers for three important Venturia spp. Our primer set detected V. inaequalis, V. pyrina, and V. carpophila in a single multiplex PCR. The scientific community can now use these specific primers for the early detection of scab infection and species identification in pome and stone fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdullah AS, Turo C, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A (2018) Real-time PCR for diagnosing and quantifying co-infection by two globally distributed fungal pathogens of wheat. Front Plant Sci 9:1086

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck A, Ritschel A, Schubert K, Braun U, Triebel D (2005) Phylogenetic relationships of the anamorphic genus Fusicladium s. lat. as inferred by ITS nrDNA data. Mycol Progress 4:111–116

    Article  Google Scholar 

  • Bhat NN et al (2018) Microsatellite mining in the genus Colletotrichum. Gene Rep 13:84–93. https://doi.org/10.1016/j.genrep.2018.09.001

    Article  Google Scholar 

  • Bock CH, Chen C, Yu F, Stevenson KL, Wood BW (2016) Draft genome sequence of Fusicladium effusum, cause of pecan scab. Stand Genom Sci 11:36

    Article  Google Scholar 

  • Braun U, Ritschel A, Schubert K (2002) Proposal to conserve the generic name Fusicladium against Spilocaea (Hyphomycetes). Taxon 51:557–557

    Article  Google Scholar 

  • Caffier V, Le Cam B, Expert P, Tellier M, Devaux M, Giraud M, Chevalier M (2012) A new scab-like disease on apple caused by the formerly saprotrophic fungus Venturia asperata. Plant Pathol 61:915–924

    Article  Google Scholar 

  • Chen C, Bock CH, Wood BW (2017) Draft genome sequence of Venturia carpophila, the causal agent of peach scab. Stand Genom Sci 12:68

    Article  Google Scholar 

  • Cooke IR et al (2014) Proteogenomic analysis of the Venturia pirina (Pear Scab Fungus) secretome reveals potential effectors. J Proteome Res 13:3635–3644

    Article  CAS  PubMed  Google Scholar 

  • Dar MS et al (2019) Venturia Crataegi causing scab on Crataegus Songarica: morpho-molecular characterization and new record from India. App Bio Res 21:274–282. https://doi.org/10.5958/0974-4517.2019.00036.3

    Article  Google Scholar 

  • Dar MS, Padder BA, Mushtaq A, Sofi TA, Mir AA, Nabi A, Shah MD (2020) Population structure of Venturia inaequalis, a hemibiotrophic fungus, under different host resistance specificities in the Kashmir valley. Arch Microbiol 202:2245–2253. https://doi.org/10.1007/s00203-020-01950-8

    Article  CAS  PubMed  Google Scholar 

  • Deng CH et al (2017) Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range. BMC Genom 18:339

    Article  Google Scholar 

  • Franco Ortega S, Prencipe S, Gullino ML, Spadaro D (2020) New molecular tool for a quick and easy detection of apple scab in the field. Agronomy 10:581

    Article  Google Scholar 

  • Gautam A (2014) Fusicladium Ahmadii on Pyrus Pashia: a new record for Indian mycobiota from Himachal Pradesh. Plant Pathol Quar 5:12–16

    Google Scholar 

  • Gladieux P et al (2010) Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host. Mol Ecol 19:658–674. https://doi.org/10.1111/j.1365-294X.2009.04498.x

    Article  PubMed  Google Scholar 

  • González-Lamothe R, Segura R, Trapero A, Baldoni L, Botella MA, Valpuesta V (2002) Phylogeny of the fungus Spilocaea oleagina, the causal agent of peacock leaf spot in olive. FEMS Microbiol Lett 210:149–155

    Article  PubMed  Google Scholar 

  • Jaber MY et al (2020) Genome sequence of Venturia oleaginea, the causal agent of olive leaf scab. Mol Plant-Microbe Interact 33:1095–1097

    Article  CAS  PubMed  Google Scholar 

  • Johnson S et al (2019) Whole genome sequence resource of the Asian Pear Scab Pathogen Venturia Nashicola. Mol Plant-Microbe Interact 32:1463–1467

    Article  CAS  PubMed  Google Scholar 

  • Karaoglu H, Lee CMY, Park R (2013) Simple sequence repeats in Puccinia graminis: abundance, cross-formae speciales and intra-species utility, and development of novel markers. Australas Plant Pathol 42:271–281

    Article  CAS  Google Scholar 

  • Koh HS, San Ho Sohn YSL, Koh YJ, Song JH, Jung JS (2013) Specific and sensitive detection of Venturia nashicola, the scab fungus of Asian pears, by nested PCR. Plant Pathol J 29:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Maurya D, Shalini R, Kashyap PL, Srivastava AK (2012) Computational mining and genome wide distribution of microsatellite in Fusarium oxysporum f. sp. Lycopersici. Not Sci Biol 4:127–131

    Article  CAS  Google Scholar 

  • Le Cam B, Devaux M, Parisi L (2001) Specific polymerase chain reaction identification of Venturia nashicola using internally transcribed spacer region in the ribosomal DNA. Phytopathology 91:900–904

    Article  PubMed  Google Scholar 

  • Le Cam B et al (2019) Population genome sequencing of the scab fungal species Venturia inaequalis, Venturia pirina, Venturia aucupariae and Venturia asperata. G3: Genes Genomes Genet 9:2405–2414

    Article  Google Scholar 

  • Lichtner FJ, Jurick WM, Ayer KM, Gaskins VL, Villani SM, Cox KD (2020) A genome resource for several North American Venturia Inaequalis isolates with multiple fungicide resistance phenotypes. Phytopathology 110:544–546

    Article  PubMed  Google Scholar 

  • Ma L-J et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padder BA, Shah MD, Ahmad M, Sofi TA, Ahanger FA, Hamid A (2011) Genetic differentiation amoung populations of Venturia inaequalis in Kashmir: a North-Western state of India Asian. J Plant Pathol 5:75–83

    Google Scholar 

  • Padder BA, Sofi TA, Mushtaq A, Shah MD, Aflaq H, Sehar S, Ahanger FA (2013) Virulence and molecular diversity of Venturia Inaequalis in commercial apple growing regions in Kashmir. J Phytopathol 161:271–279

    Article  CAS  Google Scholar 

  • Partridge EC, Morgan-Jones G (2003) Notes on Hyphomycetes. XC. Fusicladosporium, a New Genus for Cladosporium-like Anamorphs of Venturia, and the pecan scab-inducing fungus. Mycotaxon 85:357–370

    Google Scholar 

  • Prencipe S, Sillo F, Garibaldi A, Gullino ML, Spadaro D (2020) Development of a sensitive TaqMan qPCR assay for detection and quantification of Venturia inaequalis in apple leaves and fruit and in air samples. Plant Dis 104:2851–2859. https://doi.org/10.1094/PDIS-10-19-2160-RE

    Article  CAS  PubMed  Google Scholar 

  • Prokchorchik M, Won K, Lee Y, Choi ED, Segonzac C, Sohn KH (2019) High contiguity whole genome sequence and gene annotation resource for two Venturia Nashicola isolates. Mol Plant-Microbe Interact 32:1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Rossman AY et al (2015) Recommended names for pleomorphic genera in dothideomycetes. IMA Fungus 6:507–523

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics methods and protocols. Springer, Humana Press, Totowa, NJ, pp 365–386

  • Samuels G, Sivanesan A (1975) Venturia asperata sp. nov. and its Fusicladium state on apple leaves. N Z J Bot 13:645–652

    Article  Google Scholar 

  • Sánchez-Torres P, Hinarejos R, Tuset J (2009) Characterization and pathogenicity of Fusicladium eriobotryae, the fungal pathogen responsible for loquat scab. Plant Dis 93:1151–1157

    Article  PubMed  Google Scholar 

  • Schnabel G, Schnabel EL, Jones AL (1999) Characterization of ribosomal DNA from Venturia Inaequalis and its phylogenetic relationship to rDNA from other tree fruit Venturia Species. Phytopatholgy 89:100–108

    Article  CAS  Google Scholar 

  • Schubert K, Rischel A, Braun U (2013) A monograph of Fusicladium s. lat.(hyphomycetes). Schlechtendalia 9:1–132

    Google Scholar 

  • Shabi E, Rotem J, Loebenstein G (1973) Physiological races of Venturia pirina on pear. Phytopathology 63:41–43

    Article  Google Scholar 

  • Singh R, Kumar S, Kashyap PL, Srivastava AK, Mishra S, Sharma AK (2014) Identification and characterization of microsatellite from Alternaria brassicicola to assess cross-species transferability and utility as a diagnostic marker. Mol Biotechnol 56:1049–1059

    Article  CAS  PubMed  Google Scholar 

  • Sivanesan, A., 1977. The Taxonomy and Pathology of Venturia

  • Stehmann C, Pennycook S, Plummer KM (2001) Molecular identification of a sexual interloper: the pear pathogen Venturia Pirina, has sex on apple. Phytopathology 91:633–641

    Article  CAS  PubMed  Google Scholar 

  • Tautz D (1989) Hypervariabflity of Simple Sequences as a General Source for Polymorphic DNA Markers. Nucleic Acid Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thrall PH, Burdon JJ (2005) Genetic structure of populations of Alternaria brassicicola suggests the occurrence of sexual recombination. Mycol Res 109:227–236

    Article  PubMed  Google Scholar 

  • Wieczorek TM, Jørgensen LN, Hansen AL, Munk L, Justesen AF (2014) Early detection of sugar beet pathogen Ramularia beticola in leaf and air samples using qPCR. Eur J Plant Pathol 138:775–785

    Article  CAS  Google Scholar 

  • Winter DJ, Charlton ND, Krom N, Shiller J, Bock CH, Cox MP, Young CA (2020) Chromosome-level reference genome of Venturia effusa, causative agent of pecan scab. Mol Plant-Microbe Interact 33:149–152

    Article  CAS  PubMed  Google Scholar 

  • Yun YH, Yoon SK, Jung JS, Kim SH (2015) Specific and sensitive detection of the pear scab fungus Venturia nashicola by SYBR green real-time PCR. J Microbiol Biotechnol 25:1782–1786

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liu TT, Zhou PP, Li ST, Yu LJ (2011) Agrobacterium tumefaciens-mediated transformation of a taxol-producing endophytic fungus, Cladosporium cladosporioides. MD2 CUrr Microbiol 62:1315–1320. https://doi.org/10.1007/s00284-010-9864-2

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Fan F, Wang L, Chaisiri C, Yin LF, Yin WX, Luo CX (2021) Development of a loop-mediated isothermal amplification method for the rapid detection of Venturia carpophila on peach Pest. Manag Sci 77:1383–1391. https://doi.org/10.1002/ps.6154

    Article  CAS  Google Scholar 

  • Zitnick-Anderson K, Simons K, Pasche JS (2018) Detection and qPCR quantification of seven Fusarium species associated with the root rot complex in field pea Can J. Plant Pathol 40:261–271. https://doi.org/10.1080/07060661.2018.1429494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First author is thankful to Division of Plant Pathology, SKUAST-Kashmir, Shalimar for providing the necessary laboratory facility to carry out the research. The corresponding author is thankful to James D. Kelly (Distinguished Professor), Halima A. Awale and Nobel Amanda (Department of Plant Soil and Microbial Sciences, Michigan State University) for critical reading of the manuscript. This study was partially funded by Department of Biotechnology, Government of India New Delhi for providing financial assistance (Grant No:BT/PR17344/AGII/106/1005/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal A. Padder.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Hence, the authors declare that they have no conflict of interest.

Ethical statement

This research article is not submitted elsewhere for publication and this manuscript complies with the ethical rules applicable for this journal.

Informed consent

All authors consent to this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

42360_2022_529_MOESM2_ESM.jpg

Supplementary Fig. 1. Designed primers showing cross amplification between different Venturia species. V. pyrina Pr4 primer showing cross amplification with C. humile, (1a); V. carpophila C2 and C3 primers show cross transferability with V. pyrina and C. humile (1b and1c); V. inaequalis Vi3 primer shows multiple banding pattern in other Venturia spp. (Fig. 1d) (JPG 311 KB)

42360_2022_529_MOESM3_ESM.jpg

Supplementary Fig. 2. PCR based validation of Venturia species-specific primer sets. V. carpophila primer C4 shows specificity in almond and peach scab isolates (2a, 2b); Species specificity of V. pyrina Pr3 primer (2c, 2d); V. inaequalis Vi1 primer shows specificity to Apple and Cotoneaster scab isolates (2e, 2f) (JPG 1984 KB)

42360_2022_529_MOESM4_ESM.tif

Supplementary Fig. 3. In planta PCR based specificity confirmation of V. inaequalis specific Vi1 primer using DNA extracted from infected and uninfected apple leaves as a template (TIF 2973 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, M.S., Ahmad, M., Mahiya-Farooq et al. Multiplex PCR based detection method for Venturia species infecting pome and stone fruits. Indian Phytopathology 75, 941–950 (2022). https://doi.org/10.1007/s42360-022-00529-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-022-00529-1

Keywords

Navigation