Skip to main content
Log in

Detection of Xanthomonas citri pv. viticola on grapevine by real-time PCR and BIO-PCR using primers designed from pathogenicity and xanthomonadin gene sequences

  • Original Article
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Grapevine bacterial canker caused by Xanthomonas citri pv. viticola (X. campestris pv. viticola) (Xcv), was detected in Brazil in 1998 and is currently regarded as a quarantine disease with limited distribution in the country. To improve sensitivity and speed in the detection of Xcv in asymptomatic grapevines, two pairs of primers were designed, targeting sequences of a pathogenicity gene (hrpB) and the xanthomonadin coding cluster. Both pairs were tested in conventional PCR (cPCR) and real-time PCR (qPCR) formats. Primers targeting the hrpB gene showed cross reactions with other Xanthomonas spp. but were effective for use in both cPCR and qPCR, whereas primers for the xanthomonadin gene were highly specific for Xcv but showed low efficiency in qPCR. Enrichment of plant extracts in semi-selective medium before qPCR allowed a significant increase in sensitivity when compared to total DNA extraction, making it possible to detect as low as 101 CFU ml-1. Under natural infection conditions, symptomatic and asymptomatic grapevines were tested by qPCR with hrpB primers and cPCR with xanthomonadin primers. In both cases, plant extracts were enriched for 36-72h. Xcv was detected in all symptomatic samples by qPCR and the result was confirmed by cPCR. For the asymptomatic samples, Xcv was detected in 93.4% with qPCR and in 89.5% with cPCR. These two methods offer advantages in terms of sensitivity and specificity, and they could be useful in quarantine programs, certification of grapevine propagating material and detection of inoculum sources in alternative hosts, contributing to the prevention of pathogen spread to disease-free areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araújo, J. S. P., Reis Junior, F. B., Cruz, G. B., Oliveira, B. C., Robbs, C. F., Ribeiro, R. L. D., & Polidoro, J. C. (2005). Production and characterization of polyclonal antibodies against Xanthomonas campestris pv. viticola. Pesquisa Agropecuária Brasileira, 40, 305–309.

    Article  Google Scholar 

  • Ballard, E. L., Dietzgen, R. G., Sly, L. I., Gouk, C., Horlock, C., & Fegan, M. (2011). Development of a BIO-PCR protocol for the detection of Xanthomonas arboricola pv. pruni. Plant Disease, 95, 1109–1115.

    Article  CAS  Google Scholar 

  • Bull, C. T., & Koike, S. (2015). Practical benefits of knowing the enemy: modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant-pathogenic bacteria. Annual Review of Phytopathology, 53, 157–180.

    Article  CAS  Google Scholar 

  • Chiriacò, M. S., Luvisi, A., Primiceri, E., Sabella, E., De Bellis, L., & Maruccio, G. (2018). Development of a lab-on-a-chip method for rapid assay of Xylella fastidiosa subsp. pauca strain CoDiRO. Scientific Reports, 8(7376). https://doi.org/10.1038/s41598-018-25747-4.

  • Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

    Google Scholar 

  • Dunger, G. A., Arabolaza, A. L., Gottig, N., Orellano, E. G., & Ottado, J. (2005). Participation of Xanthomonas axonopodis pv. citri hrp cluster in citrus canker and nonhost plant responses. Plant Pathology, 54, 781–788.

    Article  CAS  Google Scholar 

  • Ferreira, M. A. S. V., Bonneau, S., Briand, M., Cesbron, S., Portier, P., Darrasse, A., Gama, M. A. S., Barbosa, M. A. G., Mariano, R. L. R., Souza, E. B., & Jacques, M.-A. (2019). Xanthomonas citri pv. viticola affecting grapevine in Brazil: emergence of a successful monomorphic pathogen. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00489.

  • Flores, C., Zarate, C., Triplett, L., Maillot-Lobon, V., Moufid, Y., Kanté, M., et al. (2019). Development of a duplex-PCR for differential diagnosis of Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae in cassava (Manihot esculenta). Physiological and Molecular Plant Pathology, 105, 34–46. https://doi.org/10.1016/j.pmpp.2018.07.005.

    Article  CAS  Google Scholar 

  • Gama, M. A. S., Mariano, R. L. R., Silva Junior, W. J., Farias, A. R. G., Barbosa, M. A. G., Ferreira, M. A. S. V., et al. (2018). Taxonomic repositioning of Xanthomonas campestris pv. viticola (Nayudu 1972) Dye 1978 as Xanthomonas citri pv. viticola (Nayudu 1972) Dye 1978 comb. nov. and emendation of the description of Xanthomonas citri pv. anacardii to include pigmented isolates pathogenic to cashew plant. Phytopathology, 108, 1143–1153. https://doi.org/10.1094/PHYTO-02-18-0037-R.

    Article  PubMed  Google Scholar 

  • Hassankiadeh, A. A., Kazempour, M. N., Dehkaei, F. P., & Rahimian, H. (2011). Detection of Xanthomonas oryzae pv. oryzae from rice seeds through Bio-PCR technique in paddy fields of Guilan province in northern Iran. Agricultura Tropica et Subtropica, 44, 71–76.

    Google Scholar 

  • Janse, J. D., & Wenneker, M. (2002). Possibilities of avoidance and control of bacterial plant diseases when using pathogen-tested (certified) or -treated planting material. Plant Pathology, 51, 523–536.

    Article  Google Scholar 

  • Kado, C. I., & Heskett, M. G. (1970). Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology, 60, 969–976.

    Article  CAS  Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.

    Article  CAS  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., & Thierer, T. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.

    Article  Google Scholar 

  • Kim, B. K., Cho, M. S., Kim, M. H., Choi, H. J., Kang, M. J., Shim, H. S., Ahn, T.-Y., Kim, J., & Park, D. S. (2012). Rapid and specific detection of Burkholderia glumae in rice seed by real-time Bio-PCR using species-specific primers based on an rhs family gene. Plant Disease, 96, 577–580.

    Article  CAS  Google Scholar 

  • Leite Junior, R. P., Egel, D. S., & Stall, R. E. (1994a). Genetic analysis of hrp-related DNA sequences of Xanthomonas campestris strains causing diseases of citrus. Applied and Environmental Microbiology, 60, 1078–1086.

    Google Scholar 

  • Leite Junior, R. P., Minsavage, G. V., Bonas, U., & Stall, R. E. (1994b). Detection and identification of phytopathogenic Xanthomonas strains by amplification of DNA sequences related to the hrp genes of Xanthomonas campestris pv. vesicatoria. Applied and Environmental Microbiology, 60, 1068–1077.

    Google Scholar 

  • Lima, M. F., Ferreira, M. A. S. V., Moreira, A. W., & Dianese, J. C. (1999). Bacterial canker of grapevine in Brazil. Fitopatologia Brasileira, 24, 440–444.

    Google Scholar 

  • Llop, P., Caruso, P., Cubero, J., Morente, C., & López, M. M. (1999). A simple extraction procedure for efficient routine detection of pathogenic bacteria in plant material by polymerase chain reaction. Journal of Microbiological Methods, 37, 23–31.

    Article  CAS  Google Scholar 

  • Loreti, S., Cunty, A., Pucci, N., Chabirand, A., Stefani, E., Abelleira, A., et al. (2018). Performance of diagnostic tests for the detection and identification of Pseudomonas syringae pv. actinidiae (Psa) from woody samples. European Journal of Plant Pathology, 152, 657–676.

    Article  CAS  Google Scholar 

  • Malavolta Junior, V. A., Almeida, I. M. G., Sugimori, M. H., Ribeiro, I. J. A., Rodrigues Neto, J., Pires, E. J. P., & Nogueira, E. M. C. (1999). Occurrence of Xanthomonas campestris pv. viticola on grapevine in Brazil. Summa Phytopathologica, 25, 26–27.

    Google Scholar 

  • Mavrodieva, V., Levy, L., & Gabriel, D. W. (2004). Improved sampling methods for real-time polymerase chain reaction diagnosis of citrus canker from field samples. Phytopathology, 94, 61–68.

    Article  CAS  Google Scholar 

  • Midha, S., & Patil, P. B. (2014). Genomic insights into the evolutionary origin of Xanthomonas axonopodis pv. citri and its ecological relatives. Applied and Environmental Microbiology, 80, 6266–6279.

    Article  Google Scholar 

  • Ministério da Agricultura, Pecuária e Abastecimento (MAPA). (2014). Normative Instruction N° 2, of 6th February, 2014. Retrieved from http://www.agricultura.gov.br/assuntos/sanidade-animal-e-vegetal/sanidade-vegetal/arquivos-prevencao/IN2_2014CancrodaVideira.pdf. Access date 09 July 2018

  • Palacio-Bielsa, A., Cambra, M. A., & López, M. M. (2009). PCR detection and identification of plant-pathogenic bacteria: updated review of protocols (1989-2007). Journal of Plant Pathology, 91, 249–297.

    CAS  Google Scholar 

  • Palacio-Bielsa, A., Cubero, J., Cambra, M. A., Collados, R., Berruete, I. M., & López, M. M. (2011). Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species. Applied and Environmental Microbiology, 77, 89–97.

    Article  CAS  Google Scholar 

  • Parkinson, N., Cowie, C., Heeney, J., & Stead, D. (2009). Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. International Journal of Systematic and Evolutionary Microbiology, 59, 264–274.

    Article  CAS  Google Scholar 

  • Peixoto, A. R., Mariano, R. L. R., & Viana, I. O. (2006). Semi-selective medium for isolation of Xanthomonas campestris pv. viticola. Ciência Rural, 36, 1317–1320.

    Article  Google Scholar 

  • Robène, I., Perret, M., Jouen, E., Escalon, A., Maillot, M. V., Chabirand, A., & Pruvost, O. (2015). Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed. Journal of Microbiological Methods, 114, 78–86.

    Article  Google Scholar 

  • Roberts, P. D., Jones, J. B., Chandler, C. K., Stall, R. E., & Berger, R. D. (1996). Survival of Xanthomonas fragariae on strawberry in summer nurseries in Florida detected by specific primers and nested polymerase chain reaction. Plant Disease, 80, 1283–1288.

    Article  CAS  Google Scholar 

  • Rodrigues Neto, J., Destefano, S. A. L., Rodrigues, L. M. R., Pelloso, D. S., & Oliveira Junior, L. C. (2011). Grapevine bacterial canker in the State of Sao Paulo, Brazil: detection and eradication. Tropical Plant Pathology, 36, 42–44. https://doi.org/10.1590/S1982-56762011000100006.

    Article  Google Scholar 

  • Rozen, S., & Skaletsky, H. J. (2000). Primer3 on the WWW for general users and for biologist programmers. In S. Krawetz & S. Misener (Eds.), Bioinformatics Methods and Protocols: Methods in Molecular Biology (pp. 365–386). Totowa: Humana Press.

    Google Scholar 

  • Schaad, N. W., & Frederick, R. D. (2002). Real-time PCR and its application for rapid plant disease diagnostics. Canadian Journal of Plant Pathology, 24, 250–225.

    Article  CAS  Google Scholar 

  • Schaad, N. W., Cheong, S. S., Tamaki, S., Hatziloukas, E., & Panopoulos, N. J. (1995). A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology, 85, 243–246.

    Article  CAS  Google Scholar 

  • Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory Guide for Identification of Plant Pathogenic Bacteria. St. Paul: APS Press.

    Google Scholar 

  • Singh, D., Raghavendra, B. T., Rathaur, P. S., Singh, H., Raghuwanshi, R., & Singh, R. P. (2014). Detection of black rot disease causing pathogen Xanthomonas campestris pv. campestris by BIO-PCR from seeds and plant parts of cole crops. Seed Science and Technology, 42, 36–46.

    Article  Google Scholar 

  • Tostes, G. O., Araújo, J. S. P., Farias, A. R. G., Frade, D. A. R., & Olivares, F. (2014). Detection and cellular localization of Xanthomonas campestris pv. viticola in seeds of commercial ‘Red Globe’ grapes. Tropical Plant Pathology, 39, 134–140.

    Article  Google Scholar 

  • Trindade, L. C., Lima, M. F., & Ferreira, M. A. S. V. (2005). Molecular characterization of Brazilian strains of Xanthomonas campestris pv. viticola by rep-PCR fingerprinting. Fitopatologia Brasileira, 30, 46–54.

    Article  Google Scholar 

  • Trindade, L. C., Marques, E., Lopes, D. B., & Ferreira, M. A. S. V. (2007). Development of a molecular method for detection and identification of Xanthomonas campestris pv. viticola. Summa Phytopathologica, 33, 16–23. https://doi.org/10.1590/S0100-54052007000100002.

    Article  Google Scholar 

  • Vandroemme, J., Baeyen, S., Van Vaerenbergh, J., De Vos, P., & Maes, M. (2008). Sensitive real-time PCR detection of Xanthomonas fragariae in strawberry plants. Plant Pathology, 57, 438–444.

    Article  CAS  Google Scholar 

  • Vincelli, P., & Tisserat, N. (2008). Nucleic acid–based pathogen detection in applied plant pathology. Plant Disease, 92, 660–669. https://doi.org/10.1094/PDIS-92-5-0660.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Brazilian National Council for Scientific and Technological Development (CNPq) and CAPES- MEC for doctoral scholarships awarded to JGA Villela and CNPq for a research fellowship to MASV Ferreira (Grant #310860/2016-4). The work was financed by Sistema Embrapa de Gestão (SEG), Projects: 12.13.06.011.00.00 - Management for bacterial canker and decline of grapevine in the São Francisco Valley and 02.13.03.006.00.00 - Developing of new cultivars to the viability and maintenance of Brazilian viticulture - Stage III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa A. S. V. Ferreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All authors have reviewed the manuscript and approved its submission to European Journal of Plant Pathology.

Electronic supplementary material

Table S1

(DOCX 17 kb)

Fig. S1

Localization of Xpig primers in an alignment of the xanthomonadin coding cluster of Xanthomonas citri pv. viticola (accession CBZT010000000) and Xanthomonas campestris pv. mangiferaeindicae (KF991092). (A) General view of the Xpig forward primer position in an intergenic region of X. citri pv. viticola, with a transposase insertion in X. campestris pv. mangiferaeindicae. (B) Zoomed view of Xpig primer location showing no identity with X. campestris pv. mangiferaeindicae. (PNG 760 kb)

High Resolution (TIF 185 kb)

Fig. S2

Real-time PCR (SYBR® Green) amplification curves with primers Xcv18F/19R for detection of (a) genomic DNA (1.5 ng μl-1 to 150 fg μl-1) and (b) cell suspension (108 to 1 CFU ml -1) from Xanthomonas citri pv. viticola (UnB 1188). Legend (a): A - water negative control; B - 1,5 ng μl-1; C - 150 pg μl-1; D - 15 pg μl-1; E- 1,5 pg μl-1; F- 150 fg μl-1. Legend (b): A - water negative control; B- 108 UFC ml-1; C- 107 UFC ml-1; D- 106 UFC ml-1; E- 105 UFC ml-1; F- 104 UFC ml-1; G- 103 UFC ml-1; H- 102 UFC ml-1 (PNG 1378 kb)

High Resolution (TIF 743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villela, J.G.A., Ritschel, P., Barbosa, M.A.G. et al. Detection of Xanthomonas citri pv. viticola on grapevine by real-time PCR and BIO-PCR using primers designed from pathogenicity and xanthomonadin gene sequences. Eur J Plant Pathol 155, 445–459 (2019). https://doi.org/10.1007/s10658-019-01779-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01779-y

Keywords

Navigation