Skip to main content
Log in

Development of a new methodology for the detection of Colletotrichum truncatum and Fusarium sp. in bell pepper seed

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

This study was carried out towards the development of rapid PCR-based assays for detection and identification of Colletotrichum truncatum, C. gloeosporioides sensu lato and Fusarium sp. infecting green and red bell pepper seeds in Trinidad using DNA templates produced by automated grinding and robotic paramagnetic particle capture. DNA was extracted from freshly collected symptomatic green and red bell pepper seeds using Promega’s Maxwell® 16 robotic system. The PCR assay of 220 seeds harvested from field-infected bell pepper fruit compared different optimization parameters including seeds that were symptomatic and asymptomatic of infection, the relative success of two different DNA polymerase enzymes, genus-specific and species-specific primers that were pre-existing in the literature in addition to primers that were newly designed for this study and duplex PCR for the simultaneous detection of DNA templates belonging to two different fungal species. The findings indicated that seeds carried dual infections of C. truncatum and Fusarium sp. Compared to other primers that were screened, our newly designed primers, ITS219-F/ITS419-R with GoTaq® Green Master Hot Start Taq DNA Polymerase, detected C. truncatum in the highest number of symptomatic seeds of infected green and red bell pepper fruit as well as in asymptomatic seeds of infected red bell pepper fruit. Fusarium sp. was detected only in red bell pepper seeds. Duplex PCR using ITS219-F/ITS419-R and Fa/Ra primers successfully simultaneously detected and identified C. truncatum and Fusarium sp. in symptomatic seeds of infected red bell pepper fruit. None of the seeds were infected with C. gloeosporioides sensu lato which is currently considered to be a minor pathogen in bell pepper in Trinidad. PCR-based detection methods are key tools in the detection and identification of fungal plant pathogens especially where seeds are an important inoculum source. The molecular approach as optimized in this study, is faster, more sensitive and the presence of single or dual fungal infections can be assessed in one assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Latif, A., & Osman, G. (2017). Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods, 13(1), 1.

    PubMed  PubMed Central  Google Scholar 

  • Agarwal, P. C., Singh, B., Rani, I., Joshi, K. D., Maurya, A. K., & Khetarpal, R. K. (2001). Pathogenic fungi intercepted in introduced germplasm during the year 2000. Indian Journal of Plant Genetic Resources, 13(3), 142–143.

    Google Scholar 

  • Applied Horticultural Research, Australia. (2015). Internal rot in capsicums causes and control. http://ahr.com.au/wp-content/uploads/2015/10/ICP_CapsicumRot_FINAL_Email.pdf. Integrated Crop Protection. Accessed 22 January 2019.

  • Bates, J. A., & Taylor, E. J. (2001). Scorpion ARMS primers for SNP real-time PCR detection and quantification of Pyrenophora teres. Molecular Plant Pathology, 2(5), 275–280.

    CAS  PubMed  Google Scholar 

  • Bertetti, D., Ortu, G., Gullino, M. L., & Garibaldi, A. (2015). Contamination of seeds of Iceland poppy (Papaver nudicaule L.) by Fusarium oxysporum. Phytoparasitica, 43(2), 189–196.

    CAS  Google Scholar 

  • Bluhm, B. H., Cousin, M. A., & Woloshuk, C. P. (2004). Multiplex real-time PCR detection of fumonisin-producing and trichothecene-producing groups of Fusarium species. Journal of Food Protection, 67(3), 536–543.

    CAS  PubMed  Google Scholar 

  • Bougel, S., & Benhattar, J. (2010). Impact of different DNA isolation approaches on PCR analysis of FFPE tissue samples. https://worldwide.promega.com/resources/pubhub/impact-of-different-dna-isolation-approaches-on-pcr-analysis-of-ffpe-tissue-samples/. Promega. Accessed 18 January 2019.

  • Budelier, K., & Schorr, J. (1998). Purification of DNA by anion-exchange chromatography. Current Protocols in Molecular Biology, 42(1), 2–1.

    Google Scholar 

  • Cai, L., Hyde, K. D., Taylor, P. W. J., Weir, B., Waller, J., Abang, M. M., et al. (2009). A polyphasic approach for studying Colletotrichum. Fungal Diversity, 39(1), 183–204.

    Google Scholar 

  • Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553–556.

    CAS  Google Scholar 

  • Chen, Y., Fan, G., Wu, H., Wu, Y., & Mitchell, A. (2007). Separation, identification and rapid determination of liensine, isoliensinine and neferine from embryo of the seed of Nelumbo nucifera gaertn by liquid chromatography coupled to diode array detector and tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 43(1), 99–104.

    PubMed  Google Scholar 

  • Chen, S., Cao, Y. Y., Li, T. Y., & Wu, X. X. (2015). Simultaneous detection of three wheat pathogenic fungal species by multiplex PCR. Phytoparasitica, 43(4), 449–460.

    CAS  Google Scholar 

  • Chitkara, S., Tribhuwan, S., & Dalbir, S. (1990). Histopathology of Colletotrichum dematium infected chilli seeds. Acta Botanica Indica, 18(2), 226–230.

    Google Scholar 

  • Conner, R. L., McAndrew, D. W., Balasubramanian, P., Kiehn, F. A., & Dongfang, Y. (2006). Influence of growth habit, row spacing, and seed infection on bean anthracnose development. Canadian Journal of Plant Pathology, 28(3), 411–418.

    Google Scholar 

  • Cristina, D., Ciuca, M., & Cornea, C. P. (2017). Comparison of four genomic DNA isolation methods from single dry seed of wheat, barley and rye. AgroLife Scientific Journal, 6(1), 84–91.

    Google Scholar 

  • Damm, U., Woudenberg, J. H. C., Cannon, P. F., & Crous, P. W. (2009). Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity, 39, 45–87.

    Google Scholar 

  • Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., et al. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414–430.

    PubMed  PubMed Central  Google Scholar 

  • du Toit, L. J. (2004). Management of diseases in seed crops. In R. M. Goodman (Ed.), Encyclopedia of plant and crop science (pp. 675–677). New York: Marcel Dekker Inc..

    Google Scholar 

  • Dubey, S. C., Priyanka, K., & Upadhyay, B. K. (2014). Development of molecular markers and probes based on TEF-1α, β-tubulin and ITS gene sequences for quantitative detection of Fusarium oxysporum f. sp. ciceris by using real-time PCR. Phytoparasitica, 42(3), 355–366.

    CAS  Google Scholar 

  • Edel-Hermann, V., Gautheron, N., Mounier, A., & Steinberg, C. (2015). Fusarium diversity in soil using a specific molecular approach and a cultural approach. Journal of Microbiological Methods, 111, 64–71.

    CAS  PubMed  Google Scholar 

  • Edwards, M. C., & Gibbs, R. A. (1994). Multiplex PCR: Advantages, development, and applications. PCR Methods and Applications, 3(4), S65–S75.

    CAS  PubMed  Google Scholar 

  • Embaby, H. E. S., & Mokhtar, S. M. (2011). Chemical composition and nutritive value of lantana and sweet pepper seeds and nabak seed kernels. Journal of Food Science, 76(5), 736–741.

    Google Scholar 

  • Feng, C., Mansouri, S., Bluhm, B. H., du Toit, L. J., & Correll, J. C. (2014). Multiplex real-time PCR assays for detection of four seedborne spinach pathogens. Journal of Applied Microbiology, 117(2), 472–484.

    CAS  PubMed  Google Scholar 

  • Freeman, S., & Maymon, M. (2000). Reliable detection of the fungal pathogen Fusarium oxysporum f. sp. albedinis, causal agent of bayoud disease of date palm, using molecular techniques. Phytoparasitica, 28(4), 341–348.

    CAS  Google Scholar 

  • Geiser, D. M., del Mar Jiménez-Gasco, M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., et al. (2004). Fusarium-ID v. 1.0: A DNA sequence database for identifying Fusarium. European Journal of Plant Pathology, 110(5–6), 473–479.

    CAS  Google Scholar 

  • Gergerich, R. C., Welliver, R. A., Gettys, S., Osterbauer, N. K., Kamenidou, S., Martin, R. R., et al. (2015). Safeguarding fruit crops in the age of agricultural globalization. Plant Disease, 99(2), 176–187.

    PubMed  Google Scholar 

  • Glynn, N. C., & Edwards, S. G. (2010). Evaluation of PCR assays for quantifying seed-borne infection by Fusarium and Microdochium seedling blight pathogens. Journal of Applied Microbiology, 108(1), 81–87.

    CAS  PubMed  Google Scholar 

  • Harp, T. L., Pernezny, K., Ivey, M. L. L., Miller, S. A., Kuhn, P. J., & Datnoff, L. (2008). The etiology of recent pepper anthracnose outbreaks in Florida. Crop Protection, 27(10), 1380–1384.

    Google Scholar 

  • Harp, T., Kuhn, P., Roberts, P. D., & Pernezny, K. L. (2014). Management and cross-infectivity potential of Colletotrichum acutatum causing anthracnose on bell pepper in Florida. Phytoparasitica, 42(1), 31–39.

    CAS  Google Scholar 

  • Henry, C., Aveling, T., Bonants, P., & Stefani, E. (2013). Testa-seed health: Development of seed treatment methods, evidence for seed transmission and assessment of seed health. Journal of Plant Pathology, 95(4 Supplement), 47.

    Google Scholar 

  • Kephart, D., Krueger, S., Grunst, T., & Shenoi, H. (2006). Introducing the Maxwell® 16 instrument: A simple, robust and flexible tool for DNA purification. https://www.promega.com/-/media/files/resources/promega-notes/92/introducing-the-maxwell-16-instrument-a-simple-robust-and-flexible-tool-for-dna-purification.pdf?la=en. Accessed 22 January 2019.

  • Lenart, A. M., Klimek-Kopyra, A., & Boroń, P. M. (2013). Morphological and molecular identification and PCR amplification to determine the toxigenic potential of Fusarium spp. isolated from maize ears in southern Poland. Phytoparasitica, 41(3), 241–248.

    CAS  Google Scholar 

  • Lewis Ivey, M. L., Nava-Diaz, C., & Miller, S. A. (2004). Identification and management of Colletotrichum acutatum on immature bell peppers. Plant Disease, 88(11), 1198–1204.

    PubMed  Google Scholar 

  • Lievens, B., & Thomma, B. P. (2005). Recent developments in pathogen detection arrays: Implications for fungal plant pathogens and use in practice. Phytopathology, 95(12), 1374–1380.

    CAS  PubMed  Google Scholar 

  • Mancini, V., Murolo, S., & Romanazzi, G. (2016). Diagnostic methods for detecting fungal pathogens on vegetable seeds. Plant Pathology, 65(5), 691–703.

    CAS  Google Scholar 

  • Marcinkowska, J. Z. (2002). Methods of finding and identification of pathogens in seeds. Plant Breeding and Seed Science, 46(1), 31–49.

    Google Scholar 

  • McNeil, M., Roberts, A. M. I., Cockerell, V., & Mulholland, V. (2004). Real-time PCR assay for quantification of Tilletia caries contamination of UK wheat seed. Plant Pathology, 53(6), 741–750.

    CAS  Google Scholar 

  • Mills, P. R., Sreenivasaprasad, S., & Brown, A. E. (1992). Detection and differentiation of Colletotrichum gloeosporioides isolates using PCR. FEMS Microbiology Letters, 98(1–3), 137–143.

    CAS  Google Scholar 

  • Moretti, A. N. (2009). Taxonomy of Fusarium genus: A continuous fight between lumpers and splitters. Zbornik Matice Srpske za Prirodne Nauke, 117, 7–13.

    Google Scholar 

  • Nirenberg, H. I., Feiler, U., & Hagedorn, G. (2002). Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia, 94(2), 307–320.

    PubMed  Google Scholar 

  • Pellegrino, C., Gilardi, G., Gullino, M. L., & Garibaldi, A. (2010). Detection of Phoma valerianellae in lamb’s lettuce seeds. Phytoparasitica, 38(2), 159–165.

    Google Scholar 

  • Pernezny, K., Roberts, P. D., Murphy, J. F., & Goldberg, N. P. (2003). Compendium of pepper diseases. Minnesota: APS Press.

    Google Scholar 

  • Pettitt, T. R., Parry, D. W., & Polley, R. W. (1993). Improved estimation of the incidence of Microdochium nivale in winter wheat stems in England and Wales, during 1992, by use of benomyl agar. Mycological Research, 97(10), 1172–1174.

    Google Scholar 

  • Ploetz, R. C. (2006). Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology, 96(6), 653–656.

    PubMed  Google Scholar 

  • Promega (2008). Technical manual: Maxwell® 16 instrument operating manual. https://www.promega.com/-/media/files/resources/protocols/technical-manuals/0/maxwell-16-instrument-as1000-operating-manual.pdf?la=en. Promega. Accessed 22 January 2019.

  • Ramdial, H., & Rampersad, S. N. (2015). Characterization of Colletotrichum spp. causing anthracnose of bell pepper (Capsicum annuum L.) in Trinidad. Phytoparasitica, 43(1), 37–49.

    CAS  Google Scholar 

  • Ramdial, H., Hosein, F. N., & Rampersad, S. N. (2016). Detection and molecular characterization of benzimidazole resistance among Colletotrichum truncatum isolates infecting bell pepper in Trinidad. Plant Disease, 100(6), 1146–1152.

    CAS  PubMed  Google Scholar 

  • Ramdial, H., De Abreu, K., & Rampersad, S. N. (2017). Fungicide sensitivity among isolates of Colletotrichum truncatum and Fusarium incarnatum-equiseti species complex infecting bell pepper in Trinidad. The Plant Pathology Journal, 33(2), 118–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rampersad, S. N. (2011). Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease of papaya in Trinidad. Plant Disease, 95(10), 1244–1254.

    PubMed  Google Scholar 

  • Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences, 109(16), 6241–6246.

    CAS  Google Scholar 

  • Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors–occurrence, properties and removal. Journal of Applied Microbiology, 113(5), 1014–1026.

    CAS  PubMed  Google Scholar 

  • Sharma, P. N., Kaur, M., Sharma, O. P., Sharma, P., & Pathania, A. (2005). Morphological, pathological and molecular variability in Colletotrichum capsici, the cause of fruit rot of chillies in the subtropical region of North-Western India. Journal of Phytopathology, 153(4), 232–237.

    Google Scholar 

  • Srinivasan, M., Kothandaraman, S. V., Vaikuntavasan, P., & Rethinasamy, V. (2014). Development of conventional and real-time PCR protocols for specific and sensitive detection of Colletotrichum capsici in chilli (Capsicum annuum L.). Phytoparasitica, 42(4), 437–444.

    CAS  Google Scholar 

  • Sudan, J., Raina, M., Singh, R., Mustafiz, A., & Kumari, S. (2017). A modified protocol for high-quality DNA extraction from seeds rich in secondary compounds. Journal of Crop Improvement, 31(5), 637–647.

    CAS  Google Scholar 

  • Taylor, E. J. A., Stevens, E. A., Bates, J. A., Morreale, G., Lee, D., Kenyon, D. M., & Thomas, J. E. (2001). Rapid-cycle PCR detection of Pyrenophora graminea from barley seed. Plant Pathology, 50(3), 347–355.

    CAS  Google Scholar 

  • Templeton, M. D., Rikkerink, E. H., Solon, S. L., & Crowhurst, R. N. (1992). Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene, 122(1), 225–230.

    CAS  PubMed  Google Scholar 

  • Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W., & Hyde, K. D. (2008). Chilli anthracnose disease caused by Colletotrichum species. Journal of Zhejiang University Science, 9(10), 764–778.

    Google Scholar 

  • Torres-Calzada, C., Tapia-Tussell, R., Quijano-Ramayo, A., Martin-Mex, R., Rojas-Herrera, R., Higuera-Ciapara, I., & Perez-Brito, D. (2011). A species-specific polymerase chain reaction assay for rapid and sensitive detection of Colletotrichum capsici. Molecular Biotechnology, 49, 48–55.

    CAS  PubMed  Google Scholar 

  • Utkhede, R. S., & Mathur, S. (2005). Biological and chemical control of fruit rot in greenhouse sweet peppers (Capsicum annum L.) caused by Fusarium subglutinans. Journal of Biological Sciences, 5(5), 610–615.

    Google Scholar 

  • Walcott, R. R. (2003). Detection of seedborne pathogens. HortTechnology, 40–47.

    Google Scholar 

  • Walcott, R. R., & Gitaitis, R. D. (2000). Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Disease, 84(4), 470–474.

    CAS  PubMed  Google Scholar 

  • White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. L. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: A Guide to Methods and Applications, 18(1), 315–322.

    Google Scholar 

  • Xin, Z., & Chen, J. (2006). Extraction of genomic DNA from plant tissue. In J. Kieleczawa (Ed.), DNA sequencing II : Optimizing preparation and clean up (p. 52). London: John and Bartlett Publishers learning.

    Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by The University of the West Indies, St. Augustine, Campus Research and Publication Grant #CRP.3.MAR16.12. The authors wish to thank Mr. Stephen Narine and Mr. Sumair Mahabir for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sephra N. Rampersad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(FAS 2 kb)

ESM 2

(MEG 2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villafana, R.T., Ramdass, A.C. & Rampersad, S.N. Development of a new methodology for the detection of Colletotrichum truncatum and Fusarium sp. in bell pepper seed. Phytoparasitica 47, 543–555 (2019). https://doi.org/10.1007/s12600-019-00751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-019-00751-0

Keywords

Navigation