Skip to main content

Advertisement

Log in

Trichoderma spp. in the management of stresses in plants and rural prosperity

  • Review Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

Agriculture is livelihood of rural people world wide. The different cultivated crops viz. wheat, rice, groundnut, chickpea, mung bean, potato, tomato, cucumbers, etc. suffer heavy yield losses due to biotic stresses viz. soil borne fungal pathogens i.e. species of Fusarium, Rhizoctonia, Sclerotium, Pythium, etc. and abiotic stresses i.e. extreme weather; drought; deteriorating soil health due to salinity, alkalinity, allelopathic, oxidative stresses, heavy metal accumulation, etc. Often these stresses are difficult to manage due to limitations of chemical pesticides in many ways. More than 200 spp. of Trichoderma have been recorded from different habitats, ecosystems and as symbiont/endophytes in plants. These Trichoderma spp. have been found as efficient agents of biological control and bioremediation to manage these stresses due to presence of different hydrolytic enzymes, antibiotics, peptaibols, competence in utilizing nutrients and playing the mechanisms of competition for space and nutrition, Antibiosis, Mycoparasitism, Induction of host defense; etc. Some of the Trichoderma spp. has emerged as an alternative of chemical management of these stresses. Technologies of production, delivery, etc. have been developed for the efficient use of Trichoderma. There is great demand of Trichoderma among the agriculturists all over the globe.Therefore, if supported financially by the financial agencies, the rural people and youths can take up the production to meet huge demand of the agriculture, and simultaneously they can earn the money to raise their socio-economic status, which make the rural people prosperous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas A, Jiang D, Fu Y (2017) Trichoderma spp. as antagonist of Rhizoctonia solani.J Plant Pathol Microbiol 8 (3):402–409

  • Aggarwal R, Srivastava KD, Singh DV, Bahadur P, Nagarajan S (1991) Possible biocontrol of loose smut of wheat. J Bio Control 6:114–115

    Google Scholar 

  • Aggarwal R, Singh DV, Srivastava KD, Bahadur P (1996) The potential of antagonists for biocontrol of Neovossia indica causing Karnal bunt of wheat. Indian J Biol Control 9:69–70

    Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, London

  • Aguiar RA, Cunha MG, Murillo L Jr (2014) Management of white mold in processing tomatoes by Trichoderma spp. and chemical fungicides applied by drip irrigation. Biol Control 74:1–5

    Article  Google Scholar 

  • Ahmad P, Abeer H, Elsayed FAA, Alqarawi AA, Riffat J, Dilfuza E et al (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Sci 6:868

  • Ahmed AS, Sanchez CP, Candela ME (2000) Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytopthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur J Plant Pathol 106:817–824

    Article  Google Scholar 

  • Alexander D, Rajan S, Rajamony L, Ushakumari K, Kurien S (2009) Directorate of Agriculture, Kerala Agriculture University, Thrissure, 680656, Kerala, p 209

  • Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CM, Bakker PA (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol Control 65(1):14–23

  • Azcbn-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68:1–24

    Article  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnice RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of drought response in Theobrama cacao. J Exp Bot 60:3279–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae H, Roberts DP, Lim HS, Strem M, Park SC, Ryu CM (2011) Endophytic Trichoderma isolates from tropical environments delay disease and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interact 24:336–351

    Article  CAS  PubMed  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bigirimana J, de Meyer G, Poppe J, Elad Y, Hofte M (1997) Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Med Fac Landbouww Univ Gent 62:1001–1007

    Google Scholar 

  • Boudabous A, Hermosa MR (2009) Biodiversity of Trichoderma strains in Tunisia. Can J Microbiol 55:154–162

    Article  PubMed  Google Scholar 

  • Bull CT, Shetty KG, Subbarao KV (2002) Interactions between Myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis 86:889–896

    Article  CAS  PubMed  Google Scholar 

  • Burger JT, Botha FC (2011) Expression of a β-1,3-glucanase from a biocontrol fungus in transgenic pearl millet. S Afr J Bot 77:335–345

    Article  Google Scholar 

  • Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss.var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 71(9):1769–1773

  • Chaverri P, Catlebury LA, Samuels GJ, Geiser MD (2003) Multilocus phylogenetic structure within the Trichoderma harzianum/ Hypocrea lixii complex. Mol Phylogenet Evol 27:302–313

    Article  CAS  PubMed  Google Scholar 

  • Chaverri P, Gazis R, Samuels GJ (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and guianensis from the Amazon basin. Mycologia 103:139–151

    Article  PubMed  Google Scholar 

  • Chet I (1987) Trichoderma-application, mode of action, and potential as a biocontrol agent of soil-born pathogenetic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, pp 137–160

  • Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37–43

    Article  CAS  PubMed  Google Scholar 

  • Chou C, Castilla N, Hadi B, Tanaka T, Chib S, Sato I (2020) Rice blast management in Cambodian rice fields using Trichoderma harzianum and a resistant variety. Crop Protect 135:104864

  • Chowdappa P, Mohan Kumar SP, Jyothi Lakshmi M, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65(1):109–117

  • Christian R, Röhrich WM, Jaklitsch H, Voglmayr A, Iversen CZ, Christian B, Henry M, Meinckel R, Komon-Zelazowska M, Druzhinina I, Christian S, Kubicek P, Berg G (2009) Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J 3:79–92

    Article  Google Scholar 

  • Christin Z, Christian B, Henry M, Meincke R, Komon-Zelazowska M, Christian DIS, Kubicek P, Gabriele B (2009) Fungal diversity in the Rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. ISME J 3:79–92. https://doi.org/10.1038/ismej.2008.87

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J (2014) Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant Microbe Interact 27:503–514

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2018) The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl Soil Ecol 124:45–53

    Article  Google Scholar 

  • Cummings NJ, Ambrose A, Braithwaite M, Bissett J, Roslan HA, Abdullah J, Stewart A, Agbayani FV, Steyaert J, Hill RA (2016) Diversity of root-endophytic Trichoderma from Malaysian Borneo. Mycol Progress 15:50. https://doi.org/10.1007/s11557-016-1192-x

  • Dagurere Y, Siegel K, Edel-Hermann V, Steinberg C (2014) Fungal proteins and genes associated with biocontrol mechanism of soil borne pathogens: a review. Fungal Biol Rev 28:97–125

    Article  Google Scholar 

  • Dana MM, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  PubMed Central  Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (eds) (2014) World wide pesticide use. In: Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, Berlin, pp 5–6

  • De Meyer G, Bigirimana J, Elad Y, Hofte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

  • Desai S (1997) Chemical industry in the post independence era: a finance analysis point of view. Chem Bus 11(1):25–28

    Google Scholar 

  • Doni F, Al-Shorgani NKN, Tibin EMM, Abuelhassan NN, Anizan I, Che-Radziah CMZ (2013) Microbial involvement in growth of paddy. Curr Res J Biol Sci 5(6):285–290

    Article  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 16:749–759

    Article  Google Scholar 

  • Dubey SC, Patel B (2002) Mass multiplication of antagonists and standardization of effective dose for management of web blight of urd and mung bean. Indian Phytopath 55:338–341

    Google Scholar 

  • Dubey SC, Tripathi A, Singh B (2012) Combination of soil application and seed treatment formulations of Trichoderma species for integrated management of wet root rot caused by Rhizoctonia solani in chickpea (Cicer arietinum). Indian J Agric Sci 82(4):357–364

    Google Scholar 

  • El_Komy MH, Saleh AA, Eranthodi A, Molan YY (2015) Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato fusarium wilt. Plant Pathol J 31(1): 50–60

  • Emily H, Bienkowski D, Braithwaite M, Mclean K, Falloon R, Stewart A (2014) Trichoderma strains suppress Rhizoctonia diseases and promote growth of potato. Phytopathol Mediterr 53(3):502–514

    Google Scholar 

  • Entesari M, Sharifzadeh F, Ahmadzadeh M, Farhangfar M (2013) Seed biopriming with Trichoderma species and Pseudomonas fluorescent on growth parameters, enzymes activity and nutritional status of soybean. Int J Agron Plant Prod 4(4):610–619

    Google Scholar 

  • Falah Kuchlan PMMM, Ansari K, Kuchlan MM, Ansari (2018) Efficient application of Trichoderma viride on soybean [Glycine max (L.) Merrill] seed using thin layer polymer coating. Legume Res. https://doi.org/10.18805/LR-3834

  • FAO (2017) The future of food and agriculture—trends and challenges. FAO, Rome, p 163

  • Gajera H, Domadiya R, Patel S, Kapopara M, Golakiya B (2013) Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system—a review. Curr Res Microbiol Biotechnol 1:133–142

    Google Scholar 

  • Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O (2011) Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol 77:5100–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of rubber trees (Hevea brasiliensis) in Tambopata. Peru Fungal Ecol 4:94–102

    Google Scholar 

  • Ghaffari MR, Ghabooli M, Khatabi B, Hajirezaei MR, Schweizer P, Salekdeh GH (2016) Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol Biol 90:699–717

    Article  CAS  PubMed  Google Scholar 

  • Ghorbanpour A, Salimi A, Ghanbary MAT, Pirdashti H, Dehestani A (2018) The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci Hortic 230:134–141

    Article  Google Scholar 

  • Grondona I, Hermosa MR, Tejada M, Gomis MD, Mateos PF, Bridge PD, Monte E, Garcıa-Acha I (1997) Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens. Appl Environ Microbiol 63:3189–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada RE, de Jorge Souza T, Pomella AW, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res. 112(Pt 11):1335–1143

  • Harman GE (2000) Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (2011a) Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol 189(3):647–649

    Article  PubMed  Google Scholar 

  • Harman GE (2011b) Trichoderma- not just for biocontrol anymore. Phytoparasitica 39:103–108

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hashem Abeer EF, Abd_Allah AA, Alqarawi Asma A, Al Huqail, Dilfuza Egamberdieva (2014) Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. J Plant Interact 9(1): 857–868

  • Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, Nagy A, Nagy E, Vagvolgyi C, Kredics L (2007) Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 97:532–537

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Botella L, Keck E, Jiménez JA, Montero-Barrientos M, Arbona V, Gómez-Cadenas A, Monte E, Nicolás C (2011) The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. J Plant Physiol 168:1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Hidangmayum A, Dwivedi P (2018) Plant responses to Trichoderma spp. and their tolerance to abiotic stresses: a review. J Pharmacogn Phytochem 7(1):758–766

  • Hossain MH, Hossain I (2014) Evaluation of three botanicals, bavistin and BAU-biofungicide for controlling Leaf spot of groundnut caused by Cercospora arachidicola and Cercosporidium personatum. Agriculturists 12(1):41–49

    Article  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  CAS  PubMed  Google Scholar 

  • Jaisani P, Prajapati HN, Yadav DL, Pandey RN (2016) Seed biopriming and Trichoderma enriched FYM based soil application in management of chickpea (Cicer arietinum L.) wilt complex. J Pure Appl Microbiol 10(3):2453–2460

  • Jeyarajan R, Nakkeeran S (2000) Exploitation of microorganisms and viruses as biocontrol agents for crop disease mangement. In: Upadhyay et al (eds) Biocontrol potential and their exploitation in sustainable agriculture. Kluwer Academic/Plenum Publishers, New York, pp 95–116

    Chapter  Google Scholar 

  • Jin-Lian C, Sun S-Z, Miao C-P, Kai Wu, Chen Y-W, Li-Hua Xu, Guan H-L (2016) Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J Ginseng Res 40(4):315–324

    Article  Google Scholar 

  • Kandasamy S, Li Y, Yu C, Wang Q, Wang M, Sun J, Gao J, Chen J (2017) Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci Rep 7:1771. 10.1038/ s41598-017-01680-w

  • Kannahi M, Dhivya S, Senthil kumar R (2016) Biological control on rice false smut disease using Trichoderma species. Int J Pure App Biosci 4(2):311–316

    Article  Google Scholar 

  • Kashyap PL, Gulzar SS, Wani SH, Shafi W, Kumar S, Srivastava AK, Haribhushan A, Arora DK (2011) Genes of microorganisms: paving way to tailor next generation fungal disease resistant crop plants. Not Sci Biol 3(4):147–157

    Article  CAS  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017) Nanodiagnostics for plant pathogens. Environ Chem Lett 15:7–13

    Article  CAS  Google Scholar 

  • Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065

    Article  CAS  Google Scholar 

  • Keswani C, Mishra S, Sarma B, Singh S, Singh H (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544

    Article  CAS  PubMed  Google Scholar 

  • Keszler A, Forgacs E, Kotali L, Vizcaıno JA, Monte E, Garcıa- Acha I (2000) Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid-phase extraction and gas chromatography–mass spectroscopy. J Chromatogr Sci 38:421–424

    Article  CAS  PubMed  Google Scholar 

  • Khan MY, Haque MM, Molla AH, Rahman MM, Alam MZ (2016) Antioxidant compounds and minerals in tomatoes by Trichoderma enriched biofertilizer and their relationship with the soil environments. J Integr Agric 60345–60347

  • Koike N, Hyakumachi M, Kageyama K, Tsuyumu S, Doke N (2001) Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation. Eur J Plant Pathol 107:523–533

    Article  CAS  Google Scholar 

  • Kooliyottil R, Priyanka S, Anita P (2014) Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54(5):408–417

    Article  Google Scholar 

  • Kovach J, Petzoldt R, Harman GE (2000) Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295–22 to strawberries for Botrytis control. Biol Control 18(3):235–242

    Article  Google Scholar 

  • Kredics L, Antal Z, Doczi I, Manczinger L, Kevei F, Nagy E (2003) Clinical importance of the genus Trichoderma. A review. Acta Microbiol Immunol Hung 50:105–117

    Article  CAS  PubMed  Google Scholar 

  • Kredics L, Antal Z, Szekeres A, Manczinger L, Doczi I, Kevei F, Nagy E (2004) Production of extracellular proteases by human pathogenic Trichoderma longibrachiatum strains. Acta Microbiol Immunol Hung 51:283–295

    Article  CAS  PubMed  Google Scholar 

  • Kredics L, Kocsubé S, Nagy L, Komon-Zelazowska M, Manczinger L, Sajben E, Nagy A, Vágvölgyi C, Kubicek CP, Druzhinina IS, Hatvani L (2009) Molecular identification of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. FEMS Microbiol Lett 300:58–67. https://doi.org/10.1111/j.1574-6968.2009.01765.x

    Article  CAS  PubMed  Google Scholar 

  • Kredics L, García Jimenez L, Naeimi S, Czifra D, Urbán P, Manczinger L, Vágvölgyi C, Hatvani L (2010) A challenge to mushroom growers: the green mould disease of cultivated champignons. In: Méndez-Vilas A (ed) Current research, technology and education. Topics in applied microbiology and microbial biotechnology, vol 1–2. Formatex, Badajoz, pp 295–305

  • Lei Z, Ya-qing Z (2015) Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J Integr Agric 14(8):1588–1597

    Article  Google Scholar 

  • Leon VC, Raja M, Pandian RTP, Kumar A, Sharma P (2017) Studies on opportunistic endophytism of Trichoderma species in rice (Pusa Basmati-1 (PB1)). Indian J Exp Biol 56:121–128

    Google Scholar 

  • Levy NO, Meller HY, Haile ZM, Elad Y, David E, Jurkevitch E, Katan J (2015) Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathol 64:365–374

    Article  Google Scholar 

  • Li C, Yang Z, Zhang R, Zhang D, Chen S (2013) Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J Biotechnol 168:470–477

    Article  CAS  PubMed  Google Scholar 

  • Lo CT, Liao TF, Deng TC (2000) Induction of systemic resistance of cucumber to cucumber green mosaic virus by the root-colonizing Trichoderma spp. Phytopathology 90:S47

    Google Scholar 

  • Lorito M, Woo SL, Garcia-Fernandez I, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Mucciflora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from omics to the field. Ann Rev Phytopathol 48:395–417

    Article  CAS  Google Scholar 

  • Maischak H, Zimmermann MR, Felle HH, Boland W et al (2010) Alamethicin-induced electrical long distance signaling in plants. Plant Signal Behav 5:988–990

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantero-Barrientos M, Hermosa R, Nicolas C, Cardoza RE, Gutierrez S, Monte E (2008) Over expression of a Trichoderma hsp70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genet Biol 45:1506–1513

    Article  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Sollewijn-Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2008) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  Google Scholar 

  • Mastouri F, Thomas B, Harman GE (2012) Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant Microbe Interact 25(9):1264–1271

    Article  CAS  PubMed  Google Scholar 

  • Meena BN, Pandey RN, Dama Ram, (2016) Seed biopriming for management of root rot and blight of mungbean incited by Macrophomina phaseolina (Tassi) Goid. and Rhizoctonia solani Kuhn. J Pure Appl Microbiol 10(2):0973–7510

  • Migheli Q, Balmas V, Komoñ-Zelazowska M, Scherm B, Fiori S, Caria R, Alexey G, Kopchinskiy A, Kubicek CP, Druzhinina IS (2009) Soils of a Mediterranean hot spot of biodiversity and endemism (Sardinia, Tyrrhenian Islands) are inhabited by pan-European, invasive species of Hypocrea/Trichoderma. Environ Microbiol 11(1):35–46

    Article  CAS  PubMed  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza, RE, Gutierrez S, Nicolás C, Monte E (2010) Transgenic expression of the Trichoderma harzianum HSP70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665

  • Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in induced systemic resistance response in maize. Microbiology 158:155–165

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (2013) Trichoderma in agriculture, industry and medicine: an overview. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. CABI, Nosworthy, pp 1–9

    Chapter  Google Scholar 

  • Mukhopadhyay AN, Shrestha SM, Mukherjee PK (1992) Biological seed treatment for control of soil borne plant pathogens. FAO Plant Prot Bull 40:21–30

    Google Scholar 

  • Mulaw TB, Druzhinina IS, Kubicek CP, Atanasova L (2013) Novel endophytic Trichoderma spp. isolated from healthy coffea arabica roots are capable of controlling coffee tracheomycosis. Diversity 5:750–766

    Article  Google Scholar 

  • Nicolása C, Hermosab R, Rubiob B, Mukherjee PK, Monteb E (2014) Trichoderma genes in plants for stress tolerance- status and prospects. Plant Sci 228:71–78

    Article  Google Scholar 

  • Nirmalkar VK, Tiwari RKS, Singh S (2018) Efficacy of bio-agents against damping off in solanaceous crops under nursery conditions. Int J Plant Protect 11(1):1–9

    Article  Google Scholar 

  • O’Kennedy MM, Crampton BG, Lorito M, Chakauya E, Breese WA, Burger JT, Botha FC (2011) Expression of a β-1,3-glucanase from a biocontrol fungus in transgenic pearl millet. S Afr J Bot 77:335–345

    Article  CAS  Google Scholar 

  • Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. The Plant Health Instructor, pp 1–25

  • Pandey RN (2017) Seed bio-priming in the management of seed- and soil-borne diseases. Indian Phytopathol 70(2):164–168

    Article  Google Scholar 

  • Pandey RN, Gohel NM (2017) Evaluation of bioagents for management of charcoal rot [Macrophomina phaseolina (Tassi) Goid] in soybean [Glycine max (L.) Merrill] through seed treatment and soil application.Trends Biosci 10(15):2667–2670

  • Pandey V, Ansari MW, Tula S, Yadav, Sahoo RK, Shukla N, Bains G et al (2016) Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta. https://doi.org/10.1007/s00425-016-2482-x

  • Pandey RN, Gohel NM, Jaisani P (2017) Management of wilt and root rot of chickpea caused by Fusarium oxysporum f. sp. ciceri and Macrophomina phaseolina through seed biopriming and soil application of bio-Agents. Int J Curr Microbiol Appl Sci 6(5):2516–2522

  • Patel JS, Kharwar RN, Singh HB, Upadhyay RS, Sarma BK (2017) Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifications. Front Microbiol 8:306. https://doi.org/10.3389/fmicb.2017.00306

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulitz IC (1997) Biological control of root pathogens in soilless and hydroponic systems. Hort Sci 32:193–196

    Google Scholar 

  • Paulitz TC, Anas O, Fernando DG (1992) Biological control of Pythium damping-off by seed treatment with Pseudomonas putida: relationship with ethanol production by pea and soybean seeds. Biocontrol Sci Technol 2:193–201

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Purohit J, Singh Y, Bisht S, Srinivasaraghvan A (2013) Evaluation of antagonistic potential of Trichoderma harzianum and Pseudomonas fluorescens isolates against Gloeocercospora sorghi causing zonate leaf spot of sorghum. Bioscan 8(4):1327–1330

    Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rakholiya KB, Jadeja KB (2010) Effect of seed treatment of biocontrol agents and chemicals for the management of stem and pod rot of groundnut. Int J Plant Prot 3(2):276–278

    Google Scholar 

  • Ram H, Pandey RN (2011) Efficacy of bio-control agents and fungicides in the management of wilt of pigeon pea. Indian Phytopath 64(3):269–271

    Google Scholar 

  • Ramanujam B, Prasad RD, Sriram S, Rangeswaran R (2010) Mass production, formulation, quality control and delivery of Trichoderma for plant disease management. J Plant Protect Sci 2(2):1–8

    Google Scholar 

  • Rey M, Delgado-Jarana J, Benítez T (2001) Improved antifungal activity of a mutant of Trichoderma harzianum CECT 2413 which produces more extracellular proteins. Appl Microbiol Biotechnol 55:604–608

    Article  CAS  PubMed  Google Scholar 

  • Rini P, Biswas MK, Mandal D, Naik BS (2015) Management of sheath blight disease of rice through bio control agents in west central table land zone of Odisha. Int J Adv Res 3(11):747–753

    Google Scholar 

  • Röhrich CR, Jaklitsch WM, Voglmayr HA, Vilcinskas IAK, Fog N, Ulf T, Hans D, von Brückner H, Degenkolb T (2014) Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. Fungal Divers 69:117–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Romeralo C, Santamaría O, Pando V, Diez JJ (2015) Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biol Control 80:30–90

    Article  Google Scholar 

  • Rosmana A, Samuels GJ, Ismaiel A, Ibrahim ES, Chaverri P, Herawati Y, Asman A (2015) Trichoderma asperellum: a dominant endophyte species in cacao grown in Sulawesi with potential for controlling vascular streak dieback disease. Trop Plant Pathol 40:19–25

    Article  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake & growth yield parameters of chickpea (Cicer arietinum L.). Can J Microbiol 51:217–226

    Article  CAS  PubMed  Google Scholar 

  • Sadfi-Zouaoui N, Hannachi I, Rouaissi M, Hajlaoui MR, Rubio MB, Monte E, Saksirirat W, Chareerak P, Bunyatrachata W (2009) Induced systemic resistance of biocontrol fungus, Trichoderma spp. against bacterial and grey leaf spot in tomatoes. Asian J Food Agro-Indus 2:S99–S104

    Google Scholar 

  • Saju KA, Anandraj M, Sarma YR (2002) On -farm production of Trichoderma harzianum using organic matter. Indian Phytopathol 55(3):277–328

    Google Scholar 

  • Salas-Marina MA, Isordia-Jasso M, Islas-Osuna MA, Delgado-Sánchez P, Jiménez-Bremont JF, Rodríguez-Kessler M, Rosales-Saavedra MT, Herrera-Estrella A, Casas-Flores S (2015) The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Front Plant Sci 23:77

    Google Scholar 

  • Samuels GJ (1996) Trichoderma: a review of biology and systematic of the genus. Mycol Res 100:923–935

    Article  Google Scholar 

  • Samuels GJ (2006) Trichoderma: systematic, the sexual state, and ecology 96:195–206

  • Sarrocco S, Guidi L, Fambrini S, DesI‟Innocenti E, Vannacci G (2009) Competition for cellulose exploitation between Rhizoctonia solani and two Trichoderma isolated in the decomposition of wheat straw. J Plant Pathol 91:331–338

    CAS  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaman A (2003) Efficacy of OMRI-approved products for tomato foliar disease control. N Y State Integr Pest Manag Program Publ 129:164–167

    Google Scholar 

  • Sharma BL, Singh SP, Sharma ML (2012) Bio-degradation of crop residues by Trichoderma species vis-a-vis nutrient quality of the prepared compost. Sugar Tech 14(2):174–180

    Article  CAS  Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–693

    Article  CAS  PubMed  Google Scholar 

  • Shekhar M, Dutta R, Kumar S (2010) Potential bio-control agent for management of post-flowering stalk rot complex and maize plant health. Arch Phytopathol Plant Protect 43:1392–1395

    Article  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Mastouri F, Harman GH (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Singh HB, Singh BN, Singh SP, Sarma BK (2012) Exploring different avenues of Trichoderma as a potent bio-fungicidal and plant growth promoting candidate-an overview. Rev Plant Pathol 5:315–426

    Google Scholar 

  • Singh V, Upadhyay RS, Sarma BK, Singh HB (2016) Seed bio-priming with Trichoderma asperellum effectively modulate plant growth promotion in pea. IJAEB 9(3):361–365

  • Studholme David J, Harris B, Kate LC, Winsbury R., Perera V, Ryder L, Ward JL, Beale HM, Thornton CR, Grant M (2013) Investigating the beneficia ltraits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics. Front Plant Sci Plant-Microbe Interact 4:1–13

  • Swain H, Adak T, Mukherjee AK, Mukherjee PK, Bhattacharyya P, Behera S et al (2018) Novel Trichoderma strains isolated from tree barks as potential biocontrol agents and biofertilizers for direct seeded rice. Microbiol Res 214:83–90

    Article  CAS  PubMed  Google Scholar 

  • Téllez-Vargas J, Rodríguez-Monroy M, López-Meyer M, Montes-Belmont R, Sepúlveda-Jiménez G (2017) Trichoderma asperellum ameliorates phytotoxic effects of copper in onion (Allium cepa L.). Environ Exp Bot 136:85–93

    Article  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2(3):194–208

    Article  Google Scholar 

  • Upadhyay JP, Mukhopadhyay AN (1986) Biological bioefficacy of Trichoderma harzianum control of Sclerotium rolfsii by Trichoderma harzianum in Sugarbeet. Trop Pest Dis Manag 32:215–220

    Article  Google Scholar 

  • Vernner R, Bauer P (2007) Q-TEO, a formulation concept that overcomes the incompability between water and oil. Pfalzenschutz-Nachrichten Bayer 60(1):7–26

    Google Scholar 

  • Vinale FR, Marra F, Scale EL, Lorito GM, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active different phytopathogens. Lett Appl Microbiol 43:143–148

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti E, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Woo SL, Lorito M (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347:123–129

    CAS  PubMed  Google Scholar 

  • Viterbo M, Harel B, Horwitz A, Chet I, Mukherjee PK (2005) Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    Article  CAS  PubMed  Google Scholar 

  • Wagh SP, Gangurde SV (2015) Effect of cow-dung slurry and Trichoderma spp. on quality and decomposition of Teak and Bamboo leaf compost. Res J Agric For Sci 3(2):1–4

  • Wesam IA, Saber-Khalid M, GhoneemYounes MR, Abdulaziz A, Al-Askar (2017) Trichoderma harzianum WKY1: an indole acetic acid producer for growth improvement and anthracnose disease control in sorghum. Biocontrol Sci Tech 27(5):654–676

    Article  Google Scholar 

  • Wiest A, Grzegorski D, Xu B, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  CAS  PubMed  Google Scholar 

  • Woo Sheridan L, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8 (Suppl-1, M 4):71–126

  • Yadav SK, Dave A, Sarkar A, Singh H.B.and Sarma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. IJAEB 6(2):255–259

  • Yasmeen R, Siddiqui ZS (2017) Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Bot Croat 76(2):154–162

    Article  CAS  Google Scholar 

  • Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on micro-element concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Article  CAS  Google Scholar 

  • Yuan ZL, Chen YC, Zhang CL, Lin FC, Chen LQ (2008) Trichoderma chlorosporum, a new record of endophytic fungi from Dendrobium nobile in China (in Chinese). Mycosystema 27:608–610

    Google Scholar 

  • Zhang F, Zhihua L, Mijiti G, Yucheng W, Fan H, Wang Z (2016) Functional analysis of the 1-aminocyclopropane-1- carboxylate deaminase gene of the biocontrol fungus Trichoderma asperellum ACCC30536. Can J Plant Sci 96:265–275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Pandey.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, R.N., Jaisani, P. & Yadav, D.L. Trichoderma spp. in the management of stresses in plants and rural prosperity. Indian Phytopathology 74, 453–467 (2021). https://doi.org/10.1007/s42360-021-00373-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-021-00373-9

Keywords

Navigation