Skip to main content

Advertisement

Log in

Plant growth promotion and suppression of bacterial wilt incidence in tomato by rhizobacteria, bacterial endophytes and the root endophytic fungus Piriformospora indica

  • Research Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

Four strains each of rhizobacteria and endophytic bacteria, and the root colonizing beneficial fungus Piriformospora indica were assessed for their biological control potential against tomato bacterial wilt disease caused by Ralstonia solanacearum. Two endophytic bacterial isolates, Bacillus velezensis PCSE10 and Streptomyces leeuwenhoekii KBT004 and one rhizobacterium Bacillus amyloliquefaciens VLY24 showed direct in vitro antagonism against the pathogen. Culture filtrate of B. velezensis PCSE10, B. amyloliquefaciens VLY24 and P. indica inhibited the growth of the pathogen. Among the eight bacterial strains, only Rhizobium radiobacter PCRE10 and S. leeuwenhoekii KBT004 were found to be compatible with P. indica in dual culture plate assay. Two varieties of tomato, Naveen (highly wilt susceptible hybrid) and Vellayani Vijay (moderately wilt tolerant selection) were used to evaluate the biocontrol efficacy of the bacterial bioagents and the fungal endophyte, both individually and in combinations. Disease incidence in Naveen after 21 days of pathogen inoculation was the minimum (15%) when seeds were treated with R. radiobacter PCRE10. In Vellayani Vijay, seed treatment with S. leeuwenhoekii KBT004 was the best individual treatment with a disease incidence of 30%. Treatment with P. indica showed similar results in both the varieties with 40% disease suppression. This is the first report of involvement of P. indica in suppression of a bacterial plant pathogen. Combined inoculation of P. indica with selected compatible bacterial agents did not show any promising results. However, in the nursery, seed treatment with all the bioagents showed improved seedling growth when compared with untreated control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achatz B, von Rüden S, Andrade D, Neumann E, Pons-Kühnemann J, Kogel KH, Franken P, Waller F (2010) Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil 333:59–70

    Article  CAS  Google Scholar 

  • Afroz A, Khan MR, Ahsan N, Komatsu S (2009) Comparative proteomic analysis of bacterial wilt susceptible and resistant tomato cultivars. Peptides 30:1600–1607

    Article  CAS  PubMed  Google Scholar 

  • Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49

    Article  CAS  PubMed  Google Scholar 

  • Aliye N, Fininsa C, Hiskias Y (2008) Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biol Control 47:282–288

    Article  Google Scholar 

  • Almoneafy AA, Kakar KU, Nawaz Z, Li B, Chun-lan Y, Xie GL (2014) Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 63:59–70

    Article  CAS  Google Scholar 

  • Anith KN (2009) Mature coconut as a bio-fermentor for multiplication of plant growth promoting rhizobacteria. Curr Sci 10:1647–1653

    Google Scholar 

  • Anith KN, Radhakrishnan NV, Manomohandas TP (2003) Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum). Microbiol Res 158:91–97

    Article  CAS  PubMed  Google Scholar 

  • Anith KN, Momol MT, Kloepper JW, Marois JJ, Olson SM, Jones JB (2004) Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis 88:669–673

    Article  CAS  PubMed  Google Scholar 

  • Anith KN, Sreekumar A, Sreekumar J (2015) The growth of tomato seedlings inoculated with co-cultivated Piriformospora indica and Bacillus pumilus. Symbiosis 65:9–16

    Article  CAS  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Article  PubMed  Google Scholar 

  • Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, Burmølle M, Herschend J, Bakker PA, Pieterse CM (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw-Rouse JJ, Whatley MH, Coplin DL, Woods A, Sequeria L, Kelman A (1981) Agglutination of Erwinia stewartii strains with a corn agglutinin: correlation with extracellular polysaccharide production and pathogenicity. Appl Environ Microbiol 42:344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Xiong H, Helmann JD, Cai Y (2018) Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep 8:4360–4374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi SH, Lee SH, Kim HJ, Lee IS, Kozukue N, Levin CE, Friedman M (2010) Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J Agric Food Chem 58:7547–7556

    Article  CAS  PubMed  Google Scholar 

  • Cortesero AM, Stapel JO, Lewis WJ (2000) Understanding and manipulating plant attributes to enhance biological control. Biol Control 17:35–49

    Article  Google Scholar 

  • Daneshkhah R, Cabello S, Rozanska E, Sobczak M, Grundler FM, Wieczorek K, Hofmann J (2013) Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots. J Exp Bot 64:3763–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh SD, Kogel KH (2007) Piriformospora indica protects barley from root rotcaused by Fusarium graminearum. J Plant Dis Prot 114:262–268

    Article  Google Scholar 

  • Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittapongpitch V, Surat S (2003) Detection of Ralstonia solanacearum in soil and weeds from commercial tomato fields using immunocapture and the polymerase chain reaction. J Phytopathol 151:239–246

    Article  CAS  Google Scholar 

  • Engelbrecht MC (1994) Modification of a semi-selective medium for the isolation and quantification of Pseudomonas solanacearum. ACIAR Bacterial Wilt Newslett 10:3–5

    Google Scholar 

  • Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R, Schwarz D, Franken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20:191–200

    Article  PubMed  Google Scholar 

  • Feng H, Li Y, Liu Q (2013) Endophytic bacterial communities in tomato plants with differential resistance to Ralstonia solanacearum. Afr J Microbiol Res 7:1311–1318

    Article  Google Scholar 

  • Hu HQ, Li XS, He H (2010) Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biol Control 54:359–365

    Article  Google Scholar 

  • Ishihara T, Mitsuhara I, Takahashi H, Nakaho K (2012) Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS One 7:e46763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24:285–291

    Article  Google Scholar 

  • Jiménez-Esquilín AE, Roane TM (2005) Antifungal activities of actinomycete strains associated with high-altitude Sagebrush Rhizosphere. J Ind Microbiol Biotechnol 32:378–381

    Article  PubMed  CAS  Google Scholar 

  • Johri BN (2006) Endophytes to the rescue of plants. Curr Sci 90:1315–1316

    Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  CAS  Google Scholar 

  • Kollakkodan N, Anith KN, Radhakrishnan NV (2017) Diversity of endophytic bacteria from Piper spp. with antagonistic property against Phytophthora capsici causing foot rot disease in black pepper (Piper nigrum L.). J Trop Agric 55:63–70

    CAS  Google Scholar 

  • Lakshmipriya P, Nath VS, Veena SS, Anith KN, Sreekumar J, Jeeva ML (2017) Piriformospora indica, a cultivable endophyte for growth promotion and disease management in taro (Colocasia esculenta L.). J Root Crops 42:107–114

    Google Scholar 

  • Lebeau A, Daunay MC, Frary A, Palloix A, Wang JF, Dintinger J, Chiroleu F, Wicker E, Prior P (2011) Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101:154–165

    Article  CAS  PubMed  Google Scholar 

  • Lemessa F, Zeller W (2007) Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Control 42:336–344

    Article  Google Scholar 

  • Li L, Li L, Wang X, Zhu P, Wu H, Qi S (2017) Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. Plant Physiol Biochem 119:211–223

    Article  CAS  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, der Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Majeed A, Muhammad Z, Ahmad H (2018) Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep 37(12):1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Wang Q, Yan D, Ma T, Liu P, Shen J, Li Y, Ouyang C, Guo M, Cao A (2014) Evaluation of chloropicrin as a soil fumigant against Ralstonia solanacarum in ginger (Zingiber officinale Rosc.) production in China. PLOS One 9:78–84

    Google Scholar 

  • Meena KK, Mesapogu S, Kumar M, Yandigeri MS, Singh G, Saxena AK (2010) Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate-solubilising bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fert Soils 46:169–174

    Article  CAS  Google Scholar 

  • Nair CB, Anith KN (2009) Efficacy of acibenzolar-S-methyl and rhizobacteria for the management of foliar blight disease of amaranth. J Trop Agri 47:43–47

    CAS  Google Scholar 

  • Nair CB, Anith KN, Sreekumar J (2007) Mitigation of growth retardation effect of plant defense activator, acibenzolar-S-methyl, in amaranthus plants by plant growth-promoting rhizobacteria. World J Microbiol Biotechnol 23:1183–1187

    Article  CAS  Google Scholar 

  • Norman DJ, Zapata M, Gabriel DW, Duan YP, Yuen JM, Mangravita-Novo A, Donahoo RS (2009) Genetic diversity and host range variation of Ralstonia solanacearum strains entering North America. Phytopathol 99:1070–1077

    Article  CAS  Google Scholar 

  • Oelmüller R, Sherameti I, Tripathi S. Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17

    Article  CAS  Google Scholar 

  • Pandey PK, Samanta R, Yadav RN (2019) Inside the plant: addressing bacterial endophytes in biotic stress alleviation. Arch Microbiol 201:415–429

    CAS  PubMed  Google Scholar 

  • Park KS, Paul D, Kim YK, Nam KW, Lee YK, Choi HW, Lee SY (2007) Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol J 23:22–25

    Article  Google Scholar 

  • Pineda A, Kaplan I, Bezemer TM (2017) Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci 22:770–778

    Article  CAS  PubMed  Google Scholar 

  • Planas-Marquès M, Kressin JP, Kashyap A, Panthee DR, Louws FJ, Coll NS, Valls M (2020) Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato. J Exp Bot 71:2157–2171

    Article  PubMed  CAS  Google Scholar 

  • Pradhanang PM, Elphinstone JG, Fox (2000) Identification of crop and weed hosts of Ralstonia solanacearum biovar 2 in the hills of Nepal. Plant Pathol 49:403–413

    Article  Google Scholar 

  • Prior P, Allen C, Elphinstone J (2013) Bacterial wilt disease: molecular and ecological aspects. Springer, Berlin

    Google Scholar 

  • Quimby PC, King LR, Grey WE (2002) Biological control as a means of enhancing the sustainability of crop/land management systems. Agric Ecosyst Environ 88:147–152

    Article  Google Scholar 

  • Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55

    Article  Google Scholar 

  • Russo VM (2006) Biological amendment, fertilizer rate, and irrigation frequency for organic bell pepper transplant production. Hort Sci 41:1402–1407

    CAS  Google Scholar 

  • Russo VM, Perkins-Veazie P (2010) Yield and nutrient content of bell pepper pods from plants developed from seedlings inoculated or not with microorganisms. Hort Sci 45:352–358

    Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Serfling A, Wirsel SG, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97:523–531

    Article  CAS  PubMed  Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31:446–459

    Article  CAS  Google Scholar 

  • Sharma M, Schmid M, Rothballer M, Hause G, Zuccaro A, Imani J, Kämpfer P, Domann E, Schäfer P, Hartmann A, Kogel KH (2008) Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cell Microbiol 10:2235–2246

    Article  CAS  PubMed  Google Scholar 

  • Sherameti I, Tripathi S, Varma A, Oelmüller R (2008) The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Interact 21:799–807

    Article  CAS  PubMed  Google Scholar 

  • Silva HS, da Silva Romeiro R, Macagnan D, de Almeida Halfeld-Vieira B, Pereira MC, Mounteer A (2004) Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activities. Biol Control 29:288–295

    Article  CAS  Google Scholar 

  • Tan H, Zhou S, Deng Z, He M, Cao L (2011) Ribosomal-sequence-directed selection for endophytic streptomycete strains antagonistic to Ralstonia solanacearum to control tomato bacterial wilt. Biol Control 59:245–254

    Article  Google Scholar 

  • Upreti R, Thomas P (2015) Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front Microbiol 6:255–272

    Article  PubMed  PubMed Central  Google Scholar 

  • van Elsas JD, Kastelein P, van Bekkum P, van der Wolf JM, de Vries PM, van Overbeek LS (2000) Survival of Ralstonia solanacearum biovar 2 the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathol 90:1358–1366

    Article  Google Scholar 

  • Vanitha SC, Niranjana SR, Mortensen CN, Umesha S (2009) Bacterial wilt of tomato in Karnataka and its management by Pseudomonas fluorescens. Biocontrol 54:685–695

    Article  Google Scholar 

  • Varkey S, Anith KN, Narayana R, Aswini S (2018) A consortium of rhizobacteria and fungal endophyte suppress the root-knot nematode parasite in tomato. Rhizosphere 5:38–42

    Article  Google Scholar 

  • Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131

    Article  Google Scholar 

  • Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • Willcox JK, Catignani GL, Lazarus S (2003) Tomatoes and cardiovascular health. Crit Rev Food Sci Nutri 43:1–18

    Article  CAS  Google Scholar 

  • Yan Z, Reddy MS, Kloepper JW (2003) Survival and colonization of rhizobacteria in a tomato transplant system. Can J Microbiol 49:383–389

    Article  CAS  PubMed  Google Scholar 

  • Yuliar Y, Nion YA, Toyota K (2015) Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum . Microbes Environ 30:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Chen D, Li C, Sun Q, Li L, Liu F, Shen Q, Shen B (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 167:388–394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Kerala Agricultural University (KAU) for providing the research facilities for conducting the research. AS acknowledges the receipt of research fellowship from KAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Anith.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, S., Anith, K.N. Plant growth promotion and suppression of bacterial wilt incidence in tomato by rhizobacteria, bacterial endophytes and the root endophytic fungus Piriformospora indica. Indian Phytopathology 73, 629–642 (2020). https://doi.org/10.1007/s42360-020-00283-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-020-00283-2

Keywords

Navigation