Skip to main content
Log in

Preparation and Characterization of Thin Films Bismuth(III) Oxide/Zinc Oxide Nanostructures Prepared by Thermal Evaporation Technique as Gas Sensor Applications

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In This work, they made Bismuth oxide (Bi2O3-based) and zinc oxide (ZnO)–doped thin films using thermal evaporation. XRD confirms the phase geometries of monoclinic and (Bi2O3/ZnO) thin films. When ZnO is added, the average crystal size decreases from 17.35 to 8.67 nm. Structures have been examined using Fourier transform infrared (FT-IR) and scanning electron microscopy. The Fourier transform infrared (FT-IR) investigation found no chemical reactions in the (Bi2O3/ZnO) thin films. A scanning electron microscopy (SEM) examination of the (Bi2O3/ZnO) thin films showed uniform results. Increased ZnO doping reduces the diameter by 67.6%, from 34.20 to 11.06 nm. The optical properties of the (Bi2O3/ZnO) thin film material are examined in this work. It has been shown that (Bi2O3/ZnO) concentration increases absorbance and absorption coefficients. The transmittance and energy band gaps decreased as ZnO concentrations with significant UV light absorption increased. The direct current (D.C) electrical conductivity of (Bi2O3/ZnO) thin films is positively correlated with (ZnO) nanoparticle concentration and temperature, according to experiments. At the same time, the activation energy falls with (ZnO) nanoparticle concentration, given a fixed quantity. The gas sensor showed 96.4% sensitivity to H2S gas at 200 °C. The experiment employed 50 ppm H2S. Finally, the (Bi2O3/ZnO) thin film examination reveals their structural characteristics and conductivity. These results may be helpful in UV sensors and gas sensors. The utilisation of (Bi2O3/ZnO) thin film gas sensor has demonstrated significant potential as a viable option for gas sensing systems, primarily attributed to the enhanced surface area achieved by the application of metal oxide catalysts. The present study also discusses the mechanisms implicated in the augmentation of gas response and the broadened range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Yes, the data and material are available.

References

  1. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped NiTiO3: auto-combustion synthesis, characterization and photovoltaic measurements. South Afr. J. Chem. 70, 44–48 (2017). https://doi.org/10.17159/0379-4350/2017/v70a7

    Article  CAS  Google Scholar 

  2. R.W. Kelsall, I.W. Hamley, M. Geoghegan, Nanoscale Sci. Technol. (2005). https://doi.org/10.1002/0470020873

    Article  Google Scholar 

  3. J. Teizer, M. Venugopal, W. Teizer, J. Felkl, Nanotechnology and its impact on construction: bridging the gap between researchers and industry professionals. J. Constr. Eng. Manag. 138, 594–604 (2012). https://doi.org/10.1061/(asce)co.1943-7862.0000467

    Article  Google Scholar 

  4. M.C. Roco, R.S. Williams, P. Alivisatos, Nanotechnology research directions: IWGN workshop report. Vision for nanotechnology R&D in the next decade. National Science and Technology Councilarlington VA, (1999)

  5. K.P. Chong, Nanoscience and engineering in mechanics and materials. J. Phys. Chem. Solids 65, 1501–1506 (2004). https://doi.org/10.1016/j.jpcs.2003.09.032

    Article  CAS  Google Scholar 

  6. H.S. Nalwa, Handbook of nanostructured materials and nanotechnology, five-volume set (Academic Press, Cambridge, 1999)

    Google Scholar 

  7. N.A. Ibrahim, Nanomaterials for antibacterial textiles (Elsevier Inc., Amsterdam, 2015). https://doi.org/10.1016/B978-0-12-801317-5.00012-8

    Book  Google Scholar 

  8. Z. Yang, H. Peng, W. Wang, T. Liu, Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116, 2658–2667 (2010). https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  9. S. Murthy, P. Effiong, C.C. Fei, Metal oxide nanoparticles in biomedical applications. Inc (2020). https://doi.org/10.1016/b978-0-12-817505-7.00011-7

    Article  Google Scholar 

  10. G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, M.N. Pisanias, Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym Lett 1, 781–789 (2007)

    Article  CAS  Google Scholar 

  11. S. Laurent, S. Boutry, R.N. Muller, Metal oxide particles and their prospects for applications (Elsevier Ltd., Amsterdam, 2018). https://doi.org/10.1016/b978-0-08-101925-2.00001-2

    Book  Google Scholar 

  12. M. Abudayyak, E. Öztaş, M. Arici, G. Özhan, Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines. Chemosphere 169, 117–123 (2017). https://doi.org/10.1016/j.chemosphere.2016.11.018

    Article  CAS  Google Scholar 

  13. M. Schuisky, A. Harsta, Communications epitaxial growth of Bi2O2.33 by halide CVD. Chem. Vap. Depos. 2, 235–238 (1996). https://doi.org/10.1002/cvde.19960020604

    Article  CAS  Google Scholar 

  14. L. Leontie, M. Caraman, M. Delibaş, G.I. Rusu, Optical properties of bismuth trioxide thin films. Mater. Res. Bull. 36, 1629–1637 (2001). https://doi.org/10.1016/S0025-5408(01)00641-9

    Article  CAS  Google Scholar 

  15. L. Zhang, Y. Hashimoto, T. Taishi, I. Nakamura, Q.Q. Ni, Fabrication of flower-shaped Bi2O3 superstructure by a facile template-free process. Appl. Surf. Sci. 257, 6577–6582 (2011). https://doi.org/10.1016/j.apsusc.2011.02.081

    Article  CAS  Google Scholar 

  16. A. Moezzi, A.M. McDonagh, M.B. Cortie, Zinc oxide particles: synthesis, properties and applications. Chem. Eng. J. 185–186, 1–22 (2012). https://doi.org/10.1016/j.cej.2012.01.076

    Article  CAS  Google Scholar 

  17. S.A. Vanalakar, M.G. Gang, V.L. Patil, T.D. Dongale, P.S. Patil, J.H. Kim, Enhanced gas-sensing response of zinc oxide nanorods synthesized via hydrothermal route for nitrogen dioxide gas. J. Electron. Mater. 48, 589–595 (2019). https://doi.org/10.1007/s11664-018-6752-1

    Article  CAS  Google Scholar 

  18. U. Leipzig, E. Physik, Donor-like defects in ZnO substrate materials and ZnO thin films. Appl. Phys. A 139, 135–139 (2007). https://doi.org/10.1007/s00339-007-3966-0

    Article  CAS  Google Scholar 

  19. S. Das, S. Mojumder, D. Saha, M. Pal, Influence of major parameters on the sensing mechanism of semiconductor metal oxide based chemiresistive gas sensors: a review focused on personalized healthcare. Sens. Actuators B Chem. 352, 131066 (2022)

    Article  CAS  Google Scholar 

  20. N.A. Hassan, I.H. Khudayer, Study of the structural and optical properties of CuAlxIn1-xTe2 thin film, AIP conference proceedings. vol. 2190 (2019). https://doi.org/10.1063/1.5138536

  21. A. Razzaq, A. Ridha, N.A. Al-isawi, Studying the effect of annealing temperatures on the optical properties of CdS: 1 % Cu nanoparticles thin films prepared by thermal evaporation technique Studying the effect of annealing temperatures on the optical properties of CdS: 1 % Cu nanoparticle, (2019). https://doi.org/10.1088/1742-6596/1234/1/012029

  22. B.H. Rabee, The optical properties of copper oxide nanoparticles with (polyvinyl alcohol-polyethylene glycol) Blend. J. Chem. Pharm. Res. 9(5), 310–314 (2017)

    CAS  Google Scholar 

  23. M.H. Meteab, A. Hashim, B.H. Rabee, Synthesis and tailoring the morphological, optical, electronic and photodegradation characteristics of PS–PC/MnO2–SiC quaternary nanostructures. Opt. Quant. Electron. 55, 187 (2023)

    Article  CAS  Google Scholar 

  24. H.S. Suhail, A.R. Abdulridha, Investigation of the morphological, optical, and D.C electrical characteristics of synthesized (Bi2O3/ZnO) nanocomposites, as well as their potential use in hydrogen sulfide gas sensor. Trans. Electr. Electron. Mater. 24, 205–216 (2023). https://doi.org/10.1007/s42341-023-00436-w

    Article  Google Scholar 

  25. H.S. Suhail, B.H. Rabee, New nanocomposites (PMMA-SPO-SiC) fabrication and of their structural and electrical properties for pressure sensors. AIP conference proceeding, vol. 2213 (2020). https://doi.org/10.1063/5.0000093

  26. B.H. Rabee, B. Al-Kareem, B. Al Shafaay, Effect addition Al2O3 on the (AC, DC) electrical properties of ethylene-alpha olefin copolymer. Int J Sci Res 6, 2319–7064 (2017)

    Google Scholar 

  27. S.B. Jagadale, V.L. Patil, S.S. Mali, S.A. Vanalakar, C.K. Hong, P.S. Patil, H.P. Deshmukh, Nanorods to nanosheets structural evolution of NixZn1-xO for NO2 gas sensing application. J. Alloys Compd. 766, 941–951 (2018). https://doi.org/10.1016/j.jallcom.2018.07.040

    Article  CAS  Google Scholar 

  28. S.S. Al-abbas, R.A. Ghazi, A.K. Al-shammari, N.R. Aldulaimi, A.R. Abdulridha, S.H. Al-nesrawy, E. Al-bermany, Influence of the polymer molecular weights on the electrical properties of poly (vinyl alcohol)–poly (ethylene glycols)/graphene oxide nanocomposites. Mater. Today Proc. 42, 2469–2474 (2021). https://doi.org/10.1016/j.matpr.2020.12.565

    Article  CAS  Google Scholar 

  29. M.K. Halimah, A. Azuraida, M. Ishak, L. Hasnimulyati, Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. J. Non Cryst. Solids 512, 140–147 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.03.004

    Article  CAS  Google Scholar 

  30. S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Efficient photodegradation of endocrine-disrupting chemicals with Bi2O3-ZnO nanorods under a compact fluorescent lamp. Water Air Soil Pollut. 224, 1–11 (2013). https://doi.org/10.1007/s11270-013-1565-6

    Article  CAS  Google Scholar 

  31. P.D. File, Joint committee on powder diffraction standards, ASTM, Philadelphia, Pa. (1967) pp. 9–185

  32. C. Indium, Crystallographic parameters subfiles and quality comments references peak list, (2010) pp. 1–2

  33. A.K. Sahoo, M.R. Panigrahi, A study on strain and density in graphene-induced Bi2O3 thin film. Bull. Mater. Sci. 44, 1–9 (2021). https://doi.org/10.1007/s12034-021-02515-1

    Article  CAS  Google Scholar 

  34. V.K. Landge, S.H. Sonawane, M. Sivakumar, S.S. Sonawane, G. Uday Bhaskar Babu, G. Boczkaj, S-scheme heterojunction Bi2O3-ZnO/Bentonite clay composite with enhanced photocatalytic performance. Sustain. Energy Technol. Assess. 45, 101194 (2021). https://doi.org/10.1016/j.seta.2021.101194

    Article  Google Scholar 

  35. K.H. Abass, M.K. Mohammed, Fabrication of ZnO:Al/Si solar cell and enhancement its efficiency via Al-doping. Nano Biomed. Eng. 11, 170–177 (2019). https://doi.org/10.5101/nbe.v11i2.p170-177

    Article  CAS  Google Scholar 

  36. M. Yasin, M. Saeed, M. Muneer, M. Usman, A. Ul Haq, M. Sadia, M. Altaf, Development of Bi2O3-ZnO heterostructure for enhanced photodegradation of rhodamine B and reactive yellow dyes. Surf. Interfaces 30, 101846 (2022). https://doi.org/10.1016/j.surfin.2022.101846

    Article  CAS  Google Scholar 

  37. L. Meng, W. Xu, Q. Zhang, T. Yang, S. Shi, Study of nanostructural bismuth oxide films prepared by radio frequency reactive magnetron sputtering. Appl. Surf. Sci. 472, 165–171 (2019). https://doi.org/10.1016/j.apsusc.2018.02.017

    Article  CAS  Google Scholar 

  38. I. Dhahri, M. Ellouze, S. Labidi, Q.M. Al-Bataineh, J. Etzkorn, H. Guermazi, A. Telfah, C.J. Tavares, R. Hergenröder, T. Appel, Optical and structural properties of ZnO NPs and ZnO–Bi2O3 nanocomposites. Ceram. Int. 48, 266–277 (2022)

    Article  CAS  Google Scholar 

  39. S. Kumari, D. Mohan, S. Yadav, Effect of Bi2O3 content on non linear optical properties of TeO2.Bi2O3.B2O3.ZnO glass system. AIP conference proceeding. vol. 2093, pp. 2–5, (2019). https://doi.org/10.1063/1.5097118

  40. D.K. Eric, Engines of creation. The coming Era of nanotechnology, anchor B. (1986)

  41. A.D. Ghaleb Abdul Wahab, N.N. Hussein, B. Ahmed, T. Rafia, The effect of bismuth oxide Bi2O3 on some optical properties of poly-vinyl alcohol. Br. J. Sci. 4, 117–124 (2012)

    Google Scholar 

  42. H.S. Suhail, A.R. Abdulridha, Synthesis, optical and A.C electrical characteristics of nanocomposites (Bi2O3/ZnO) films prepared by thermal evaporation technique. (2022)

  43. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses. Ceram. Int. 45, 20724–20732 (2019). https://doi.org/10.1016/j.ceramint.2019.07.056

    Article  CAS  Google Scholar 

  44. S. Indris, P. Heitjans, M. Ulrich, A. Bunde, AC and DC conductivity in nano-and microcrystalline Li2O: B2O3 composites: experimental results and theoretical models, Zeitschrift Fur phys. Chemie 219, 89–103 (2005). https://doi.org/10.1524/zpch.219.1.89.55015

    Article  CAS  Google Scholar 

  45. A. Sawalha, A.Ã. Sedky, Electrical conductivity study in pure and doped ZnO ceramic system. Phys. B Condens. Matter 404, 1316–1320 (2009). https://doi.org/10.1016/j.physb.2008.12.017

    Article  CAS  Google Scholar 

  46. M.S. Patil, V.L. Patil, N.L. Tarwal, D.D. More, V.V. Alman, L.D. Kadam, P.S. Patil, J.H. Kim, Gas sensing properties of hydrothermally synthesized button rose-like WO3 thin films. J. Electron. Mater. 48, 526–535 (2019). https://doi.org/10.1007/s11664-018-6756-x

    Article  CAS  Google Scholar 

  47. M.H. Sarfi, M. Ghadimi, A. Babaee, H2S gas sensor based on SnO2 and CuO nanoparticles. STEM Fellowsh. J. 1, 21–26 (2016). https://doi.org/10.17975/sfj-2015-012

    Article  Google Scholar 

  48. U.M. Nayef, R.I. Kamel, Bi2O3 nanoparticles ablated on porous silicon for sensing NO2 gas. Optik (Stuttg) 208, 164146 (2020). https://doi.org/10.1016/j.ijleo.2019.164146

    Article  CAS  Google Scholar 

  49. N.H. Harb, F.A.H. Mutlak, Gas sensing characteristics of WO3NPs sensors fabricated by pulsed laser deposition on PS n-type. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00877-1

    Article  Google Scholar 

  50. S.P. Subin David, S. Veeralakshmi, J. Sandhya, S. Nehru, S. Kalaiselvam, Room temperature operatable high sensitive toluene gas sensor using chemiresistive Ag/Bi2O3 nanocomposite. Sens. Actuators B Chem 320, 128410 (2020). https://doi.org/10.1016/j.snb.2020.128410

    Article  CAS  Google Scholar 

  51. S.A. Vanalakar, V.L. Patil, N.S. Harale, S.A. Vhanalakar, M.G. Gang, J.Y. Kim, P.S. Patil, J.H. Kim, Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens. Actuators B Chem 221, 1195–1201 (2015). https://doi.org/10.1016/j.snb.2015.07.084

    Article  CAS  Google Scholar 

  52. Q. Zhou, W. Zeng, W. Chen, L. Xu, R. Kumar, A. Umar, High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. Sens. Actuators B Chem 298, 126870 (2019). https://doi.org/10.1016/j.snb.2019.126870

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the University of Babylon and the Department of Physics for their invaluable assistance in facilitating the successful completion of this work.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

HSS and ARA, the manuscript received feedback from all authors. The final manuscript was read and approved by all of the authors.

Corresponding author

Correspondence to Hassanein S. Suhail.

Ethics declarations

Conflict of interest

No conflict of interest.

Human and Animal Rights

The authors assert that the present study does not encompass any human participants, obviating the need for permission. The authors additionally affirm that this paper is an authentic piece of work that has not been previously presented in any form or language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhail, H.S., Abdulridha, A.R. Preparation and Characterization of Thin Films Bismuth(III) Oxide/Zinc Oxide Nanostructures Prepared by Thermal Evaporation Technique as Gas Sensor Applications. Trans. Electr. Electron. Mater. 25, 1–14 (2024). https://doi.org/10.1007/s42341-023-00490-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00490-4

Keywords

Navigation