Skip to main content
Log in

Investigation of the Morphological, Optical, and D.C Electrical Characteristics of Synthesized (Bi2O3/ZnO) Nanocomposites, as Well as Their Potential Use in Hydrogen Sulfide Gas Sensor

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this present work, bismuth oxide (based on Bi2O3) and zinc oxide (ZnO-doped) thin films were produced by thermal evaporation (RT) method on 50-nm-thick glass substrates and annealed at 573 K. SEM showed that the (Bi2O3/ZnO) nanoparticles were evenly dispersed throughout when the ZnO doping concentration was increased. The actual result of the optical characteristics of (Bi2O3/ZnO) showed that (extinction coefficient, refractive index, real part and imaginary part of the dielectric constant) increase with increasing concentrations of ZnO nanoparticles. This behavior makes them excellent optical materials for photonics applications. The results of the D.C electrical characteristics show that the D.C electrical conductivity of the (Bi2O3/ZnO) nanocomposites increases with increasing nanoparticle (ZnO) concentrations and temperature. At the same time, the resistance and activation energy decrease with increasing nanoparticle (ZnO) concentrations. The measured gas sensor revealed a sensitivity to H2S of about 69.74% at 200 °C, decreasing to about 55.14% at 250 °C and 51.42% at 300 °C. Finally, the results of the structural and conductive characteristics of (Bi2O3/ZnO) thin films can be used in various nanoelectronics devices and gas sensors. Finally, the results expected that metal oxide nanostructures will prove to be the most effective building blocks for developing cutting-edge gas sensors. The effects of various doping’s on the morphology and crystal structure of ZnO materials are examined in depth in this article. This article provides sound advice for developing high-performance semiconductor oxide sensing materials based on zinc oxide (ZnO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Material

Yes, the data and material are available.

References

  1. M. Wang, T. Wang, P. Cai, X. Chen, Nanomaterials discovery and design through machine learning, small. Methods 3, 1–7 (2019). https://doi.org/10.1002/smtd.201900025

    Article  CAS  Google Scholar 

  2. J. Wright, Nanotechnology: deliver on a promise. Sci. Am. 311, S12–S13 (2014). https://doi.org/10.1038/scientificamerican0714-S12

    Article  Google Scholar 

  3. X. Li, X. Liu, J. Huang, Y. Fan, F.Z. Cui, Biomedical investigation of CNT based coatings. Surf. Coat. Technol. 206, 759–766 (2011). https://doi.org/10.1016/j.surfcoat.2011.02.063

    Article  CAS  Google Scholar 

  4. Y. Bai, C. Wang, J. Gao, J. Su, W. Ma, A study on dispersion and antibacterial activity of functionalizing multi-walled carbon nanotubes with mixed surfactant. J. Surfactants Deterg. 18, 957–964 (2015). https://doi.org/10.1007/s11743-015-1729-z

    Article  CAS  Google Scholar 

  5. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel Silver-doped NiTiO3: auto-combustion synthesis, characterization and photovoltaic measurements. S. Afr. J. Chem. 70, 44–48 (2017). https://doi.org/10.17159/0379-4350/2017/v70a7

    Article  CAS  Google Scholar 

  6. J. Teizer, M. Venugopal, W. Teizer, J. Felkl, Nanotechnology and its impact on construction: bridging the gap between researchers and industry professionals. J. Constr. Eng. Manag. 138, 594–604 (2012). https://doi.org/10.1061/(asce)co.1943-7862.0000467

    Article  Google Scholar 

  7. L. Li, Y. Yang, G. Li, L. Zhang, Conversion of a Bi nanowire array to an array of Bi–Bi2O3 core-shell nanowires and Bi2O3 Nanotubes. Small 230031, 548–553 (2006). https://doi.org/10.1002/smll.200500382

    Article  CAS  Google Scholar 

  8. L. Leontie, M. Caraman, A. Visinoiu, G.I. Rusu, On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition. Thin Solid Films 473, 230–235 (2005). https://doi.org/10.1016/j.tsf.2004.07.061

    Article  CAS  Google Scholar 

  9. H. Gobrecht, S. Seeck, H. E. Bergt, A. Märtens, K. Kossmann, Investigations on evaporated films of bismuth oxide ii. determination of type of conductivity and photoconductivity measurements on doped and undoped layers. Phys. Status Solidi (b), 34(2), 569–576, (1969). https://doi.org/10.1002/pssb.19690340217

  10. L. Leontie, M. Caraman, I. Evtodiev, E. Cuculescu, A. Mija, Optical properties of bismuth oxide applications and materials science thin films prepared by reactive dc magnetron sputtering onto p-GaSe (Cu). Phys. Status Solidi 2056, 2052–2056 (2009). https://doi.org/10.1002/pssa.200778868

    Article  CAS  Google Scholar 

  11. W. H. Dumbaugh, J. C. Lapp, Heavy‐metal oxide glasses. J. Am. Ceram. Soc, 75(9), 2315–2326, (1992). https://doi.org/10.1111/j.1151-2916.1992.tb05581.x

  12. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morko̧, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1–103 (2005). https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  13. R. Triboulet, J. Perrie, Epitaxial growth of ZnO films. Prog Cryst. Growth Charact. Mater. 47(2–3), 65–138 (2003). https://doi.org/10.1016/j.pcrysgrow.2005.01.003

    Article  Google Scholar 

  14. Y.H. Leung, A.B. Djuris, Optical properties of ZnO. Nanostruct. Small (2006). https://doi.org/10.1002/smll.200600134

    Article  Google Scholar 

  15. V.V. Kondalkar, L.T. Duy, H. Seo, K. Lee, Nanohybrids of Pt-functionalized Al2O3/ZnO core-shell nanorods for high-performance MEMS-based acetylene gas sensor. ACS Appl. Mater. Interfaces 11(29), 25891–25900 (2019). https://doi.org/10.1021/acsami.9b06338

    Article  Google Scholar 

  16. K. Yuan, C. Wang, L. Zhu, Q. Cao, J. Yang, X. Li, W. Huang, Y. Wang, H. Lu, D.W. Zhang, Fabrication of a Micro-Electromechanical System-Based Acetone Gas Sensor Using CeO2 Nanodot-Decorated WO3 Nanowires. ACS Appl. Mater. Interfaces 12(12), 14095–14104 (2020). https://doi.org/10.1021/acsami.9b18863

    Article  Google Scholar 

  17. F. Liu, X. Wang, X. Chen, X. Song, J. Tian, H. Cui, Porous ZnO ultrathin nanosheets with high specific surface areas and abundant oxygen vacancies for acetylacetone gas sensing. ACS Appl. Mater. Interfaces 11(27), 24757–24763 (2019). https://doi.org/10.1021/acsami.9b06701

    Article  Google Scholar 

  18. G. Namgung, Q.T.H. Ta, W. Yang, J. Noh, Diffusion-driven Al-doping of ZnO nanorods and stretchable gas sensors made of doped ZnO Nanorods/Ag nanowires bilayers. ACS Appl. Mater. Interfaces 11(1), 1411–1419 (2018). https://doi.org/10.1021/acsami.8b17336

    Article  Google Scholar 

  19. C. Wang, Y. Li, F. Gong, Y. Zhang, S. Fang, H. L. Zhang, Advances in doped ZnO nanostructures for gas sensor. Chem. Rec. 20(12), 1553–1567 (2020). https://doi.org/10.1002/tcr.202000088

    Article  Google Scholar 

  20. B. Song, M. Zhang, Y. Teng, X. Zhang, Z. Deng, L. Huo, S. Gao, Highly selective ppb-level H2S sensor for spendable detection of exhaled biomarker and pork freshness at low temperature: mesoporous SnO2 hierarchical architectures derived from waste scallion root. Sens. Actuators B Chem. (2020). https://doi.org/10.1016/j.snb.2020.127662

    Article  Google Scholar 

  21. S. Tian, F. Yang, D. Zeng, C. Xie, Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J. Phys. Chem. C, 116(19), 10586–10591 (2012). https://doi.org/10.1021/jp2123778

  22. G. Li, H. Zhang, L. Meng, Z. Sun, Z. Chen, X. Huang, Y. Qin, Adjustment of oxygen vacancy states in ZnO and its application in ppb-level NO2 gas sensor. Sci. Bull. (2020). https://doi.org/10.1016/j.scib.2020.05.027

    Article  Google Scholar 

  23. R. G. Kadhim, M. H. Shinen, M. S. Abdali, Study the optical properties of polyaniline multiwelled carbon nanotubes nano composite. J. Babylon Uni./Pure Appl. Sci., 25(3), 1031–1042 (2017)

  24. J.H. Nahida, Spectrophotometric analysis for the UV-irradiated (PMMA). Int. J. Basic Appl. Sci. 12, 58–67 (2012)

    Google Scholar 

  25. K. Al-Ammar, A. Hashim, M. Husaien, Synthesis and study of optical properties of (PMMA-CrCl2) composites. Chem. Mater. Eng. 1, 85–87 (2013). https://doi.org/10.13189/cme.2013.010304

    Article  Google Scholar 

  26. M.R. Islam, J. Podder, Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor. Cryst. Res. Technol. 44, 286–292 (2009). https://doi.org/10.1002/crat.200800326

    Article  CAS  Google Scholar 

  27. A. Abu El-Fadl, S. Bin Anooz, Optical properties of pure and metal ions doped ammonium sulfate single crystals. Cryst. Res. Technol. 41, 487–493 (2006). https://doi.org/10.1002/crat.200510610

    Article  CAS  Google Scholar 

  28. T.C. Sabari Girisun, S. Dhanuskodi, Linear and nonlinear optical properties of tris thiourea zinc sulphate single crystals. Cryst. Res. Technol. 44, 1297–1302 (2009). https://doi.org/10.1002/crat.200900351

    Article  CAS  Google Scholar 

  29. Z. Yang, H. Peng, W. Wang, T. Liu, Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116, 2658–2667 (2010). https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  30. H.S. Suhail, B.H. Rabee, New nanocomposites (PMMA-SPO-SiC) fabrication and of their structural and electrical properties for pressure sensors, in AIP Conf. Proc. 2213 (2020). https://doi.org/10.1063/5.0000093

  31. S.S. Al-abbas, R.A. Ghazi, A.K. Al-shammari, N.R. Aldulaimi, A.R. Abdulridha, S.H. Al-nesrawy, E. Al-bermany, Materials today: proceedings influence of the polymer molecular weights on the electrical properties of Poly(vinyl alcohol)–Poly(ethylene glycols )/Graphene oxide nanocomposites. Mater. Today Proc. 42, 2469–2474 (2021). https://doi.org/10.1016/j.matpr.2020.12.565

    Article  CAS  Google Scholar 

  32. R.S. Ali, K.S. Sharba, A.M. Jabbar, S.S. Chiad, K.H. Abass, N.F. Habubi, Characterization of ZnO thin film/p-Si fabricated by vacuum evaporation method for solar cell applications. NeuroQuantology 18, 26–31 (2020). https://doi.org/10.14704/nq.2020.18.1.NQ20103

    Article  Google Scholar 

  33. E.S. Hassan, K.Y. Qader, E.H. Hadi, S.S. Chiad, N.F. Habubi, K.H. Abass, Sensitivity of nanostructured mn-doped cobalt oxide films for gas sensor application. Nano Biomed. Eng. 12, 205–213 (2020). https://doi.org/10.5101/nbe.v12i3.p205-213

    Article  CAS  Google Scholar 

  34. M. Yasin, M. Saeed, M. Muneer, M. Usman, A. ul Haq, M. Sadia, M. Altaf, Development of Bi2O3-ZnO heterostructure for enhanced photodegradation of rhodamine B and reactive yellow dyes. Surfaces Interfaces 30, 101846 (2022). https://doi.org/10.1016/j.surfin.2022.101846

    Article  CAS  Google Scholar 

  35. C.R. Dhas, R. Venkatesh, R. Sivakumar, A.M.E. Raj, C. Sanjeeviraja, Effect of solution molarity on optical dispersion energy parameters and electrochromic performance of Co3O4 films. Opt. Mater. 72, 717–729 (2017). https://doi.org/10.1016/j.optmat.2017.07.026

    Article  CAS  Google Scholar 

  36. M. Oubaha, S. Elmaghrum, R. Copperwhite, B. Corcoran, C. McDonagh, A. Gorin, Optical properties of high refractive index thin films processed at low-temperature. Opt. Mater. 34, 1366–1370 (2012). https://doi.org/10.1016/j.optmat.2012.02.023

    Article  CAS  Google Scholar 

  37. A. Razzaq, A. Ridha, N.A. Al-isawi, Studying the effect of annealing temperatures on the optical properties of CdS : 1% Cu nanoparticles thin films prepared by thermal evaporation technique (2019). https://doi.org/10.1088/1742-6596/1234/1/012029

  38. M.H. Meteab, A. Hashim, B.H. Rabee, Synthesis and tailoring the morphological, optical, electronic and photodegradation characteristics of PS–PC/MnO2–SiC quaternary nanostructures. Opt. Quantum Electron. 55, 187 (2023). https://doi.org/10.1007/s11082-022-04447-4

    Article  CAS  Google Scholar 

  39. A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9257-z

    Article  Google Scholar 

  40. A.A. Mohaimeed, B.H. Rabee, Influence of Berry dye on some properties of nanocomposite (PVA/TiO2) films. Opt. Quantum Electron. (2023). https://doi.org/10.1007/s11082-022-04523-9

    Article  Google Scholar 

  41. R. Vettumperumal, S. Kalyanaraman, R. Thangavel, Enhancement of optical conductivity in the ultra-violet region of Cs doped ZnO sol gel thin films. J. Sol-Gel Sci. Technol. 66, 206–211 (2013). https://doi.org/10.1007/s10971-013-2993-x

    Article  CAS  Google Scholar 

  42. K. Majdi, H. Fadhal, Electrical conduction of PMMA and the effect of graphite addition. Univ. Basrah, Iraqi Polym. 1, 15–20 (1997)

    Google Scholar 

  43. A. Sawalha, A.Ã. Sedky, Electrical conductivity study in pure and doped ZnO ceramic system. Phys. B 404(8-11), 1316–1320 (2009). https://doi.org/10.1016/j.physb.2008.12.017

    Article  CAS  Google Scholar 

  44. F.S. Freitas, A.S. Gonçalves, A. De Morais, J.E. Benedetti, A.F. Nogueira, Graphene-like MoS2 as a low-cost counter electrode material for dye-sensitized solar cells. J. NanoGe J. Energy Sustain. (2012). https://doi.org/10.1039/c0xx00000x

    Article  Google Scholar 

  45. L.A. Patil, A.R. Bari, M.D. Shinde, V.V. Deo, D.P. Amalnerkar, Synthesis of ZnO nanocrystalline powder from ultrasonic atomization technique, characterization, and its application in gas sensing. IEEE Sens. J. 11, 939–946 (2011). https://doi.org/10.1109/JSEN.2010.2066265

    Article  CAS  Google Scholar 

  46. M.H. Sarfi, M. Ghadimi, A. Babaee, H2S gas sensor based on SnO2 and CuO nanoparticles. STEM Fellowsh. J. 1, 21–26 (2015). https://doi.org/10.17975/sfj-2015-012

    Article  Google Scholar 

  47. N.H. Harb, F.A.H. Mutlak, Gas sensing characteristics of WO3NPs sensors fabricated by pulsed laser deposition on PS n-type. J. Opt. (2022). https://doi.org/10.1007/s12596-022-00877-1

    Article  Google Scholar 

  48. U.M. Nayef, R.I. Kamel, Bi2O3 nanoparticles ablated on porous silicon for sensing NO2 gas. Optik 208, 164146 (2020). https://doi.org/10.1016/j.ijleo.2019.164146

    Article  CAS  Google Scholar 

  49. P.D. File, Joint committee on powder diffraction standards, ASTM, Philadelphia, Pa, (1967), pp. 9–185

  50. C. Indium, Crystallographic parameters subfiles and quality comments references Peak list, (2010), pp. 1–2.

  51. A.K. Sahoo, M.R. Panigrahi, A study on strain and density in graphene-induced Bi2O3 thin film. Bull. Mater. Sci. 44, 1–9 (2021). https://doi.org/10.1007/s12034-021-02515-1

    Article  CAS  Google Scholar 

  52. V.K. Landge, S.H. Sonawane, M. Sivakumar, S.S. Sonawane, G. Uday-Bhaskar-Babu, G. Boczkaj, S-scheme heterojunction Bi2O3-ZnO/Bentonite clay composite with enhanced photocatalytic performance. Sustain. Energy Technol. Assess. 45, 101194 (2021). https://doi.org/10.1016/j.seta.2021.101194

    Article  Google Scholar 

Download references

Acknowledgements

We thank university of Babylon and department of physics for their great support to complete this work.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Hassanein S. Suhail and Ali R. Abdulridha.

Corresponding author

Correspondence to Hassanein S. Suhail.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and Animal Rights

The authors declare that the paper does not involve any human study subjects, and as such, no consent is required. The authors also testify that this is an original article that has not been submitted elsewhere in any way or language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhail, H.S., Abdulridha, A.R. Investigation of the Morphological, Optical, and D.C Electrical Characteristics of Synthesized (Bi2O3/ZnO) Nanocomposites, as Well as Their Potential Use in Hydrogen Sulfide Gas Sensor. Trans. Electr. Electron. Mater. 24, 205–216 (2023). https://doi.org/10.1007/s42341-023-00436-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00436-w

Keywords

Navigation